日志服务支持Shard自动分裂

本文涉及的产品
对象存储 OSS,20GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
对象存储 OSS,内容安全 1000 次 1年
简介: 日志服务提供Shard自动分裂功能,实时监控Shard流量,自动进行shard分裂以应对流量上涨,解决流量估算不准、随时可能上涨又难以及时处理的问题,保障数据完整。

日志服务的数据模型中,使用Shard来控制Logstore的写入、读取吞吐能力,每个Shard提供5MB/sec写入、10MB/sec读取,通常情况下,shard越多,Logstore的吞吐越大。

在创建Logstore时,可以根据实际数据量来进行预先设置shard的个数,同时,日志服务提供shard的split和merge功能,在日志量超过现有shard处理能力的情况,用户可分裂shard提升Logstore的处理能力。

image

但是,你有没有为这样情况而烦恼 :

  • 事先无法准确预估数据量,预设多少个shard才合适呢
  • 数据量随时会突增,人不一定能够及时处理,长时间超quota无法写入而导致丢失的风险

针对以上情况,日志服务提供了Shard自动分裂功能,后台实时监控每个shard的流量,如果发现一个shard的写入在一段时间内,有连续出现超过shard处理能力的情况,会触发shard的自动分裂。触发条件:

  • 数据量超出Shard的服务能力,且持续5分钟。
  • Logstore中readwrite状态的Shard数目未超过设定的最大shard总数。

image

开启Logstore的自动分裂功能也非常简单,只要修改一下Logstore属性:
image

配置项 说明
自动分裂shard Shard自动分裂功能开关。开启该功能后,满足条件的Shard会在数据量超出Shard服务能力时自动分裂。
最大分裂数 Shard自动分裂后的最大数目。开启自动分裂Shard功能后,最大可支持自动分裂至64个分区。

开启Shard自动分裂后, 你的Logstore将直接拥有自动弹性扩容的能力,解决流量估算不准、随时可能上涨又难以及时处理的问题,保障数据完整。

相关实践学习
通过日志服务实现云资源OSS的安全审计
本实验介绍如何通过日志服务实现云资源OSS的安全审计。
目录
相关文章
|
5月前
|
监控 容灾 算法
阿里云 SLS 多云日志接入最佳实践:链路、成本与高可用性优化
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
629 54
|
11月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
2984 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
10月前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
262 9
|
12月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
1080 3
|
8月前
|
存储 SQL 关系型数据库
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log、原理、写入过程;binlog与redolog区别、update语句的执行流程、两阶段提交、主从复制、三种日志的使用场景;查询日志、慢查询日志、错误日志等其他几类日志
642 35
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
|
7月前
|
监控 Java 应用服务中间件
Tomcat log日志解析
理解和解析Tomcat日志文件对于诊断和解决Web应用中的问题至关重要。通过分析 `catalina.out`、`localhost.log`、`localhost_access_log.*.txt`、`manager.log`和 `host-manager.log`等日志文件,可以快速定位和解决问题,确保Tomcat服务器的稳定运行。掌握这些日志解析技巧,可以显著提高运维和开发效率。
550 13
|
7月前
|
缓存 Java 编译器
|
8月前
|
存储 缓存 关系型数据库
图解MySQL【日志】——Redo Log
Redo Log(重做日志)是数据库中用于记录数据页修改的物理日志,确保事务的持久性和一致性。其主要作用包括崩溃恢复、提高性能和保证事务一致性。Redo Log 通过先写日志的方式,在内存中缓存修改操作,并在适当时候刷入磁盘,减少随机写入带来的性能损耗。WAL(Write-Ahead Logging)技术的核心思想是先将修改操作记录到日志文件中,再择机写入磁盘,从而实现高效且安全的数据持久化。Redo Log 的持久化过程涉及 Redo Log Buffer 和不同刷盘时机的控制参数(如 `innodb_flush_log_at_trx_commit`),以平衡性能与数据安全性。
284 5
图解MySQL【日志】——Redo Log
|
9月前
|
SQL 关系型数据库 MySQL
MySQL事务日志-Undo Log工作原理分析
事务的持久性是交由Redo Log来保证,原子性则是交由Undo Log来保证。如果事务中的SQL执行到一半出现错误,需要把前面已经执行过的SQL撤销以达到原子性的目的,这个过程也叫做"回滚",所以Undo Log也叫回滚日志。
361 7
MySQL事务日志-Undo Log工作原理分析

相关产品

  • 日志服务