机器学习和数据科学领域必读的10本免费书籍

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 暑期来了,别出去溜达了,看书学习一波~

在这个暑假,有兴趣的可以阅读一下这些免费的有关机器学习和数据科学的书籍,他们能给你打开一扇看清机器学习和数据科学的窗。如果在阅读完这一文章后想知晓更多免费的好书,请查看本系列的前一篇或下面的相关内容。

50094ef6262598a8a6abe86c76df94c3c25b4f9a

1. Python Data Science Handbook

作者:Jake VanderPlas

本书介绍了在Python中处理数据所必需的核心库,特别是IPythonNumPyPandasMatplotlibScikit-Lean和相关的软件包。在此之前您需要掌握Python这种语言,如果您想快速掌握这门语言,可以参阅这个针对研究人员和科学家的Python语言快速入门的“Python的旋风之旅(A Whirlwind Tour of Python)”。

2. Neural Networks and Deep Learning

作者:Michael Nielsen

这是一本免费的在线书籍。通过这本书你会知道神经网络是一个美丽的生物启发式编程范例,使计算机可以从观测数据中学习。而深度学习则是一套强大的神经网络学习技术。

目前,神经网络和深度学习为图像识别、语音识别和自然语言处理(NLP)中的问题提供了很多效果不错的解决方案。通过这本书您将会知道更多神经网络和深度学习背后的核心概念。

3. Think Bayes

作者:Allen B.Downey

这本书主要介绍了如何使用计算方法处理贝叶斯统计

如果您想使用本书中的技能来学习其他技能,您需要知道如何编程。

贝叶斯统计是根据数学概念(如微积分)提出的,有关它的大多数书籍也都使用的是数学符号。本书使用Python代码而不是数学,因此“积分”变成了“总和”。这是书中的一个特色。

4. Machine Learning & Big Data

作者:Karee Alkaseer

这本书背后的目的是为了让软件工程师在不依赖库的情况下可以轻松使用机器学习模型。大多数情况下,模型或技术背后的概念很简单、直观,但在细节或行话中会丢失。另外,一般情况下,现有的库可以解决手头的问题,但是有时候它们会用自己的方式抽象和隐藏基本概念,这就是它们被称为“黑盒子”的原因。这本书也尝试着将“黑盒子”里被抽象和隐藏的基本概念清晰化。它是一个还在进行中的作品,它的内容将慢慢的丰富。

5. Satistical Learning with Sparsity:The Lasso and Generalizations

作者:Trevor Hastie,Robert Tibshirani,Martin Wainwright

在过去的十年中,计算和信息技术得到了迅猛发展。随着它的应用,在医学、生物学、金融和市场营销等领域中涌现出了大量的数据。本书在一个共同的概念框架下,阐述了这些领域中的一些重要观点。

6. Statistical inference for data science

作者:Brian Caffo

作为数据科学专业的一部分 ,本书是统计推理课程(Statistical Inference)的一本配套书籍。如果你没有上这门课,也可以配着YouTube上有关视频单独学习这本书。

本书旨在以低成本介绍统计推理这一重要领域,使得具有编程能力的学生将这些技能用到数据科学或统计学当中去。

7. Convex Optimization

作者:Stephen Boyd & Lieven Vandenberghe

这本书的主要内容是关于凸优化(convex optimization),这是一类特殊的数学优化问题,它包括最小二乘和线性规划问题。众所周知,最小二乘和线性规划问题有一个相当完整的理论,出现在各种应用中,并且可以非常有效地用数值求解。本书的基本观点是,对于较大类的凸优化问题也可以如此。

8. Natural Language Processing with Python

作者:Steven Bird & Ewan Klein & Edward Loper

本书基于Python编程语言和一个叫自然语言工具包(NLTK)的开源库写作而成的。“自然语言”是指用于人类日常交流的语言,与编程语言和数字符号等语言不同,自然语言在代代相传的过程中不断发展,并且很难用明确的规则来确定。为了让计算机更好地理解自然语言,我们开发运用了自然语言处理(NLP)。这本书就是有关自然语言处理(NLP)的书。

9. Automate the Boring Stuff with Python

作者:AI Sweigart

你是否有过为花费数小时为文件重命名或更新表格里的数百个单元格而烦躁的经历?在这本书中,你将会学到如何使用Python来轻松搞定这些问题。Python十分好上手,一旦掌握了编程的基础知识,就可以创建Python程序,就此轻松解决那些繁琐的事情。

10.Social Media Mining: An Introduction

作者:Reza  Zafarani & Mohammad Ali Abbasi & Huan Liu

社交媒体在过去十年的发展已经彻底革新了个人互动和行业开展业务的方式。个人通过社交媒体互动、共享产生了大量的数据。

在这本书中,你将了解到社交媒体挖掘(Social Media Mining)整合了社交媒体,社交网络分析和数据挖掘,为学生、从业人员、研究人员等提供了一个方便而一致的平台。同时也将会了解到社交媒体挖掘(Social Media Mining)的潜力。

数十款阿里云产品限时折扣中,赶紧点击领券开始云上实践吧!

本文由北邮@爱可可-爱生活 老师推荐,阿里云云栖社区组织翻译

文章原标题《10 More Free Must-Read Books For Machine Learning and Data Science》

作者:Matthew Mayo

译者:乌拉乌拉,审校:袁虎。

文章为简译,更为详细的内容,请查看原文文章

相关文章
|
3月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
50 0
|
5月前
|
机器学习/深度学习 API 网络架构
"解锁机器学习超级能力!Databricks携手Mlflow,让模型训练与部署上演智能风暴,一触即发,点燃你的数据科学梦想!"
【8月更文挑战第9天】机器学习模型的训练与部署流程复杂,涵盖数据准备、模型训练、性能评估及部署等步骤。本文详述如何借助Databricks与Mlflow的强大组合来管理这一流程。首先需在Databricks环境内安装Mlflow库。接着,利用Mlflow跟踪功能记录训练过程中的参数与性能指标。最后,通过Mlflow提供的模型服务功能,采用REST API或Docker容器等方式部署模型。这一流程充分利用了Databricks的数据处理能力和Mlflow的生命周期管理优势。
203 7
|
6月前
|
机器学习/深度学习 数据采集 存储
在机器学习和数据科学中,数据预处理是一个至关重要的步骤。数据规范化(或称为特征缩放)是预处理的一种常见技术,它可以帮助我们改进模型的性能。`sklearn.preprocessing`模块提供了多种数据规范化的方法,其中`StandardScaler`和`MinMaxScaler`是最常用的两种。
在机器学习和数据科学中,数据预处理是一个至关重要的步骤。数据规范化(或称为特征缩放)是预处理的一种常见技术,它可以帮助我们改进模型的性能。`sklearn.preprocessing`模块提供了多种数据规范化的方法,其中`StandardScaler`和`MinMaxScaler`是最常用的两种。
|
8月前
|
机器学习/深度学习 算法 数据处理
从数据科学到机器学习的过渡:技术与思维的演进
【5月更文挑战第21天】本文探讨了从数据科学到机器学习的过渡,强调了技术与思维的转变。数据科学侧重数据处理和分析,为机器学习提供基础;机器学习是数据科学的强大力量,涉及算法开发。过渡需掌握机器学习算法、编程语言(如Python)及库,转变思维方式,注重预测和优化分析。建议包括深入学习算法、实践项目、掌握编程工具和保持好奇心。这一过渡是职业发展的重要步骤。
|
7月前
|
机器学习/深度学习 算法 搜索推荐
【机器学习】近邻类模型:KNN算法在数据科学中的实践与探索
【机器学习】近邻类模型:KNN算法在数据科学中的实践与探索
118 0
|
7月前
|
机器学习/深度学习 数据采集 算法
踏上机器学习之路:探索数据科学的奥秘与魅力
踏上机器学习之路:探索数据科学的奥秘与魅力
53 0
|
8月前
|
机器学习/深度学习 数据可视化 数据挖掘
《Python 简易速速上手小册》第9章:数据科学和机器学习入门(2024 最新版)
《Python 简易速速上手小册》第9章:数据科学和机器学习入门(2024 最新版)
72 1
|
8月前
|
机器学习/深度学习 算法 Java
现代数据科学中的机器学习技术发展与应用
本文探讨了现代数据科学领域中机器学习技术的发展和应用。我们介绍了机器学习的基本概念和原理,并探讨了它在前端、后端、Java、Python、C以及数据库等多种技术领域的具体应用。通过深入剖析不同领域的案例研究,我们展示了机器学习在解决实际问题和推动技术创新方面的巨大潜力。最后,我们对未来机器学习技术的发展趋势进行了展望。