大数据在家纺行业四大创新性应用

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

大数据在家纺行业四大创新性应用
随着网络和信息技术的不断普及,人类产生的数据量正在呈指数级增长,而云计算的诞生,更是直接把我们送进了大数据时代。“大数据”作为时下最时髦的词汇,开始向各行业渗透辐射,颠覆着很多特别是传统行业的管理和运营思维。在这一大背景下,大数据也触动着家纺行业管理者的神经,搅动着家纺行业管理者的思维;大数据在家纺行业释放出的巨大价值吸引着诸多家纺行业人士的兴趣和关注。探讨和学习如何借助大数据为家纺行业经营管理服务也是当今该行业管理者面临的挑战。

大数据应用,其真正的核心在于挖掘数据中蕴藏的情报价值,而不是简单的数据计算。那么,对于家纺行业来说,管理者应该如何来借助大数据为家纺行业的运营管理服务呢?同时大数据应用又将如何突出其在家纺行业的情报价值呢?对此,我从以下四个方面整理总结了大数据在家纺行业的创新性应用。

一、大数据有助于精确家纺行业市场定位

成功的品牌离不开精准的市场定位,可以这样说,一个成功的市场定位,能够使一个企业的品牌加倍快速成长,而基于大数据的市场数据分析和调研是企业进行品牌定位的第一步。家纺行业企业要想在无硝烟的市场中分得一杯羹,需要架构大数据战略,拓宽家纺行业调研数据的广度和深度,从大数据中了解家纺行业市场构成、细分市场特征、消费者需求和竞争者状况等众多因素,在科学系统的信息数据收集、管理、分析的基础上,提出更好的解决问题的方案和建议,保证企业品牌市场定位独具个性化,提高企业品牌市场定位的行业接受度。

企业想进入或开拓某一区域家纺行业市场,首先要进行项目评估和可行性分析,只有通过项目评估和可行性分析才能最终决定是否适合进入或者开拓这块市场。如果适合,那么这个区域人口是多少?消费水平怎么样?客户的消费习惯是什么?市场对产品的认知度怎么样?当前的市场供需情况怎么样?公众的消费喜好是什么等等,这些问题背后包含的海量信息构成了家纺行业市场调研的大数据,对这些大数据的分析就是我们的市场定位过程。

企业开拓新市场,需要动用巨大的人力、物力和精力,如果市场定位不精准或者出现偏差,其给投资商和企业自身带来后期损失是巨大甚至有时是毁灭性的,由此看出市场定位对家纺行业市场开拓的重要性。只有定位准确乃至精确,企业才能构建出满足市场需求地产品,使自己在竞争中立于不败之地。但是,要想做到这一点,就必须有足够量的信息数据来供家纺行业研究人员分析和判断。在传统情况下,分析数据的收集主要来自于统计年鉴、行业管理部门数据、相关行业报告、行业专家意见及属地市场调查等,这些数据多存在样本量不足,时间滞后和准确度低等缺陷,研究人员能够获得的信息量非常有限,使准确的市场定位存在着数据瓶颈。随着大数据时代的来临,借助数据挖掘和信息采集技术不仅能给研究人员提供足够的样本量和数据信息,还能够建立基于大数据数学模型对未来市场进行预测。当然,依靠传统的人工数据收集和统计显然难以满足大数据环境下的数据需求,这就需要依靠相关数据公司(如深圳乐思软件)自动化数据采集工具的帮助。

二、大数据成为家纺行业市场营销的利器

今天,从搜索引擎、社交网络的普及到人手一机的智能移动设备,互联网上的信息总量正以极快的速度不断暴涨。每天在Facebook、Twitter、微博、微信、论坛、新闻评论、电商平台上分享各种文本、照片、视频、音频、数据等信息高达的几百亿甚至几千亿条,这些信息涵盖着、商家信息、个人信息、行业资讯、产品使用体验、商品浏览记录、商品成交记录、产品价格动态等等海量信息。这些数据通过聚类可以形成家纺行业大数据,其背后隐藏的是家纺行业的市场需求、竞争情报,闪现着巨大的财富价值。

在家纺行业市场营销工作中,无论是产品、渠道、价格还是顾客,可以说每一项工作都与大数据的采集和分析息息相关,而以下两个方面又是家纺行业市场营销工作中的重中之重。一是通过获取数据并加以统计分析来充分了解市场信息,掌握竞争者的商情和动态,知晓产品在竞争群中所处的市场地位,来达到“知彼知己,百战不殆”的目的;二是企业通过积累和挖掘家纺行业消费者档案数据,有助于分析顾客的消费行为和价值趣向,便于更好地为消费者服务和发展忠诚顾客。

以家纺行业在对顾客的消费行为和趣向分析方面为例,如果企业平时善于积累、收集和整理消费者的消费行为方面的信息数据,如:消费者购买产品的花费、选择的产品渠道、偏好产品的类型、产品使用周期、购买产品的目的、消费者家庭背景、工作和生活环境、个人消费观和价值观等。如果企业收集到了这些数据,建立消费者大数据库,便可通过统计和分析来掌握消费者的消费行为、兴趣偏好和产品的市场口碑现状,再根据这些总结出来的行为、兴趣爱好和产品口碑现状制定有针对性的营销方案和营销战略,投消费者所好,那么其带来的营销效应是可想而知的。因此,可以说大数据中蕴含着出奇制胜的力量,如果企业管理者善于在市场营销加以运用,将成为家纺行业市场竞争中立于不败之地的利器。

三、大数据支撑家纺行业收益管理

收益管理作为实现收益最大化的一门理论学科,近年来受到家纺行业人士的普遍关注和推广运用。收益管理意在把合适的产品或服务,在合适的时间,以合适的价格,通过合适的销售渠道,出售给合适的顾客,最终实现企业收益最大化目标。要达到收益管理的目标,需求预测、细分市场和敏感度分析是此项工作的三个重要环节,而这三个的环节推进的基础就是大数据。

需求预测是通过对建构的大数据统计与分析,采取科学的预测方法,通过建立数学模型,使企业管理者掌握和了解家纺行业潜在的市场需求,未来一段时间每个细分市场的产品销售量和产品价格走势等,从而使企业能够通过价格的杠杆来调节市场的供需平衡,并针对不同的细分市场来实行动态定价和差别定价。需求预测的好处在于可提高企业管理者对家纺行业市场判断的前瞻性,并在不同的市场波动周期以合适的产品和价格投放市场,获得潜在的收益。细分市场为企业预测销售量和实行差别定价提供了条件,其科学性体现在通过家纺行业市场需求预测来制定和更新价格,最大化各个细分市场的收益。敏感度分析是通过需求价格弹性分析技术,对不同细分市场的价格进行优化,最大限度地挖掘市场潜在的收入。

大数据时代的来临,为企业收益管理工作的开展提供了更加广阔的空间。需求预测、细分市场和敏感度分析对数据需求量很大,而传统的数据分析大多是采集的是企业自身的历史数据来进行预测和分析,容易忽视整个家纺行业信息数据,因此难免使预测结果存在偏差。企业在实施收益管理过程中如果能在自有数据的基础上,依靠一些自动化信息采集软件来收集更多的家纺行业数据,了解更多的家纺行业市场信息,这将会对制订准确的收益策略,盈得更高的收益起到推进作用。

四、大数据创新家纺行业需求开发

随着论坛、博客、微博、微信、电商平台、点评网等媒介在PC端和移动端的创新和发展,公众分享信息变得更加便捷自由,而公众分享信息的主动性促使了“网络评论”这一新型舆论形式的发展。微博、微信、点评网、评论版上成千上亿的网络评论形成了交互性大数据,其中蕴藏了巨大的家纺行业需求开发价值,值得企业管理者重视。

网络评论,最早源自于互联网论坛,是供网友闲暇之余相互交流的网络社交平台。在微博、微信、论坛、评论版等平台随处可见网友使用某款产品优点点评、缺点的吐槽、功能需求点评、质量好坏与否点评、外形美观度点评、款式样式点评等信息,这些都构成了产品需求大数据。同时,消费者对企业服务及产品简单表扬与评批演变得更加的客观真实,消费者的评价内容也更趋于专业化和理性化,发布的渠道也更加广泛。作为家纺行业企业,如果能对网上家纺行业的评论数据进行收集,建立网评大数据库,然后再利用分词、聚类、情感分析了解消费者的消费行为、价值趣向、评论中体现的新消费需求和企业产品质量问题,以此来改进和创新产品,量化产品价值,制订合理的价格及提高服务质量,从中获取更大的收益。

大数据,并不是一个神秘的字眼,只要家纺行业企业平时善于积累和运用自动化工具收集、挖掘、统计和分析这些数据,为我所用,都会有效地帮助自己提高市场竞争力和收益能力,盈得良好的效益。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
3月前
|
存储 数据采集 搜索推荐
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
本篇文章探讨了 Java 大数据在智慧文旅景区中的创新应用,重点分析了如何通过数据采集、情感分析与可视化等技术,挖掘游客情感需求,进而优化景区服务。文章结合实际案例,展示了 Java 在数据处理与智能推荐等方面的强大能力,为文旅行业的智慧化升级提供了可行路径。
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用(216)
本文探讨Java大数据可视化在城市空气质量监测与污染溯源中的创新应用,结合多源数据采集、实时分析与GIS技术,助力环保决策,提升城市空气质量管理水平。
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用(216)
|
3月前
|
存储 监控 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在企业生产运营监控与决策支持中的应用(228)
本文探讨了基于 Java 的大数据可视化技术在企业生产运营监控与决策支持中的关键应用。面对数据爆炸、信息孤岛和实时性不足等挑战,Java 通过高效数据采集、清洗与可视化引擎,助力企业构建实时监控与智能决策系统,显著提升运营效率与竞争力。
|
3月前
|
Java 大数据 数据处理
Java 大视界 -- 基于 Java 的大数据实时数据处理在工业互联网设备协同制造中的应用与挑战(222)
本文探讨了基于 Java 的大数据实时数据处理在工业互联网设备协同制造中的应用与挑战。文章分析了传统制造模式的局限性,介绍了工业互联网带来的机遇,并结合实际案例展示了 Java 在多源数据采集、实时处理及设备协同优化中的关键技术应用。同时,也深入讨论了数据安全、技术架构等挑战及应对策略。
|
3月前
|
数据采集 搜索推荐 Java
Java 大视界 -- Java 大数据在智能教育虚拟学习环境构建与用户体验优化中的应用(221)
本文探讨 Java 大数据在智能教育虚拟学习环境中的应用,涵盖多源数据采集、个性化推荐、实时互动优化等核心技术,结合实际案例分析其在提升学习体验与教学质量中的成效,并展望未来发展方向与技术挑战。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
Java 大视界 -- Java 大数据机器学习模型在自然语言生成中的可控性研究与应用(229)
本文深入探讨Java大数据与机器学习在自然语言生成(NLG)中的可控性研究,分析当前生成模型面临的“失控”挑战,如数据噪声、标注偏差及黑盒模型信任问题,提出Java技术在数据清洗、异构框架融合与生态工具链中的关键作用。通过条件注入、强化学习与模型融合等策略,实现文本生成的精准控制,并结合网易新闻与蚂蚁集团的实战案例,展示Java在提升生成效率与合规性方面的卓越能力,为金融、法律等强监管领域提供技术参考。
|
3月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
3月前
|
机器学习/深度学习 安全 Java
Java 大视界 -- Java 大数据在智能金融反洗钱监测与交易异常分析中的应用(224)
本文探讨 Java 大数据在智能金融反洗钱监测与交易异常分析中的应用,介绍其在数据处理、机器学习建模、实战案例及安全隐私等方面的技术方案与挑战,展现 Java 在金融风控中的强大能力。
|
3月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在生物信息学基因功能预测中的优化与应用(223)
本文探讨了Java大数据与机器学习模型在生物信息学中基因功能预测的优化与应用。通过高效的数据处理能力和智能算法,提升基因功能预测的准确性与效率,助力医学与农业发展。
|
3月前
|
机器学习/深度学习 搜索推荐 数据可视化
Java 大视界 -- Java 大数据机器学习模型在电商用户流失预测与留存策略制定中的应用(217)
本文探讨 Java 大数据与机器学习在电商用户流失预测与留存策略中的应用。通过构建高精度预测模型与动态分层策略,助力企业提前识别流失用户、精准触达,实现用户留存率与商业价值双提升,为电商应对用户流失提供技术新思路。

热门文章

最新文章