隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列

简介:

在本篇我们会讨论HMM模型最后一个问题的求解,即即给定模型和观测序列,求给定观测序列条件下,最可能出现的对应的隐藏状态序列。在阅读本篇前,建议先阅读这个系列的第一篇以熟悉HMM模型。
HMM模型的解码问题最常用的算法是维特比算法,当然也有其他的算法可以求解这个问题。同时维特比算法是一个通用的求序列最短路径的动态规划算法,也可以用于很多其他问题,比如之前讲到的文本挖掘的分词原理中我们讲到了单独用维特比算法来做分词。
本文关注于用维特比算法来解码HMM的的最可能隐藏状态序列。
1. HMM最可能隐藏状态序列求解概述
在HMM模型的解码问题中,给定模型$λ=(A,B,Π)$和观测序列$O =\{o_1,o_2,...o_T\}$,求给定观测序列O条件下,最可能出现的对应的状态序列$I^*= \{i_1^*,i_2^*,...i_T^*\}$,即$P(I^*|O)$要最大化。
一个可能的近似解法是求出观测序列$O$在每个时刻$t$最可能的隐藏状态$i_t^*$然后得到一个近似的隐藏状态序列$I^*= \{i_1^*,i_2^*,...i_T^*\}$。要这样近似求解不难,利用隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率中第五节的定义:在给定模型$λ$和观测序列$O$时,在时刻$t$处于状态$q_i$的概率是$\gamma_t(i)$,这个概率可以通过HMM的前向算法与后向算法计算。这样我们有:

$$ i_t^* = arg \max_{1 \leq i \leq N}[\gamma_t(i)], \; t =1,2,...T $$

近似算法很简单,但是却不能保证预测的状态序列是整体是最可能的状态序列,因为预测的状态序列中某些相邻的隐藏状态可能存在转移概率为0的情况。
而维特比算法可以将HMM的状态序列作为一个整体来考虑,避免近似算法的问题,下面我们来看看维特比算法进行HMM解码的方法。
2. 维特比算法概述
维特比算法是一个通用的解码算法,是基于动态规划的求序列最短路径的方法。在文本挖掘的分词原理中我们已经讲到了维特比算法的一些细节。
既然是动态规划算法,那么就需要找到合适的局部状态,以及局部状态的递推公式。在HMM中,维特比算法定义了两个局部状态用于递推。
第一个局部状态是在时刻$t$隐藏状态为$i$所有可能的状态转移路径$i_1,i_2,...i_t$中的概率最大值。记为$\delta_t(i)$:

$$ \delta_t(i) = \max_{i_1,i_2,...i_{t-1}}\;P(i_t=i, i_1,i_2,...i_{t-1},o_t,o_{t-1},...o_1|\lambda),\; i =1,2,...N $$

由$\delta_t(i)$的定义可以得到$δ$的递推表达式:

$$ \begin{align} \delta_{t+1}(i) & = \max_{i_1,i_2,...i_{t}}\;P(i_{t+1}=i, i_1,i_2,...i_{t},o_{t+1},o_{t},...o_1|\lambda) \\ & = \max_{1 \leq j \leq N}\;[\delta_t(j)a_{ji}]b_i(o_{t+1})\end{align} $$

第二个局部状态由第一个局部状态递推得到。我们定义在时刻$t$隐藏状态为$i$的所有单个状态转移路径$(i_1,i_2,...,i_{t-1},i)$中概率最大的转移路径中第$t−1$个节点的隐藏状态为$\Psi_t(i)$,其递推表达式可以表示为:

$$ \Psi_t(i) = arg \; \max_{1 \leq j \leq N}\;[\delta_{t-1}(j)a_{ji}] $$

有了这两个局部状态,我们就可以从时刻0一直递推到时刻$T$,然后利用$\Psi_t(i)$记录的前一个最可能的状态节点回溯,直到找到最优的隐藏状态序列。
3. 维特比算法流程总结
现在我们来总结下维特比算法的流程:
输入:HMM模型$λ=(A,B,Π)$,观测序列$O=(o_1,o_2,...o_T)$
输出:最有可能的隐藏状态序列$I^*= \{i_1^*,i_2^*,...i_T^*\}$
1)初始化局部状态:

$$ \delta_1(i) = \pi_ib_i(o_1),\;i=1,2...N $$

$$ \Psi_1(i)=0,\;i=1,2...N $$

2) 进行动态规划递推时刻$t=2,3,...T$时刻的局部状态:

$$ \delta_{t}(i) = \max_{1 \leq j \leq N}\;[\delta_{t-1}(j)a_{ji}]b_i(0_{t}),\;i=1,2...N $$

$$ \Psi_t(i) = arg \; \max_{1 \leq j \leq N}\;[\delta_{t-1}(j)a_{ji}],\;i=1,2...N $$

3) 计算时刻$T$最大的$\delta_{T}(i)$,即为最可能隐藏状态序列出现的概率。计算时刻$T$最大的$\Psi_t(i)$,即为时刻$T$最可能的隐藏状态。

$$ P* = \max_{1 \leq j \leq N}\delta_{T}(i) $$

$$ i_T^* = arg \; \max_{1 \leq j \leq N}\;[\delta_{T}(i)] $$

4) 利用局部状态$\Psi_t(i)$开始回溯。对于$t=T-1,T-2,...,1$:

$$ i_t^* = \Psi_{t+1}(i_{t+1}^*) $$

最终得到最有可能的隐藏状态序列$I^*= \{i_1^*,i_2^*,...i_T^*\}$
4. HMM维特比算法求解实例
下面我们仍然用隐马尔科夫模型HMM(一)HMM模型中盒子与球的例子来看看HMM维特比算法求解。
我们的观察集合是:

$$ V=\{红,白\},M=2 $$

我们的状态集合是:

$$ Q =\{盒子1,盒子2,盒子3\}, N=3 $$

而观察序列和状态序列的长度为3.
初始状态分布为:

$$ \Pi = (0.2,0.4,0.4)^T $$

状态转移概率分布矩阵为:

$$ A = \left( \begin{array} {ccc} 0.5 & 0.2 & 0.3 \\ 0.3 & 0.5 & 0.2 \\ 0.2 & 0.3 &0.5 \end{array} \right) $$

观测状态概率矩阵为:

$$ B = \left( \begin{array} {ccc} 0.5 & 0.5 \\ 0.4 & 0.6 \\ 0.7 & 0.3 \end{array} \right) $$

球的颜色的观测序列:

$$ O=\{红,白,红\} $$

按照我们上一节的维特比算法,首先需要得到三个隐藏状态在时刻1时对应的各自两个局部状态,此时观测状态为1:

$$ \delta_1(1) = \pi_1b_1(o_1) = 0.2 \times 0.5 = 0.1 $$

$$ \delta_1(2) = \pi_2b_2(o_1) = 0.4 \times 0.4 = 0.16 $$

$$ \delta_1(3) = \pi_3b_3(o_1) = 0.4 \times 0.7 = 0.28 $$

$$ \Psi_1(1)=\Psi_1(2) =\Psi_1(3) =0 $$

现在开始递推三个隐藏状态在时刻2时对应的各自两个局部状态,此时观测状态为2:

$$ \delta_2(1) = \max_{1\leq j \leq 3}[\delta_1(j)a_{j1}]b_1(o_2) = \max_{1\leq j \leq 3}[0.1 \times 0.5, 0.16 \times 0.3, 0.28\times 0.2] \times 0.5 = 0.028 $$

$$ \Psi_2(1)=3 $$

$$ \delta_2(2) = \max_{1\leq j \leq 3}[\delta_1(j)a_{j2}]b_2(o_2) = \max_{1\leq j \leq 3}[0.1 \times 0.2, 0.16 \times 0.5, 0.28\times 0.3] \times 0.6 = 0.0504 $$

$$ \Psi_2(2)=3 $$

$$ \delta_2(3) = \max_{1\leq j \leq 3}[\delta_1(j)a_{j3}]b_3(o_2) = \max_{1\leq j \leq 3}[0.1 \times 0.3, 0.16 \times 0.2, 0.28\times 0.5] \times 0.3 = 0.042 $$

$$ \Psi_2(3)=3 $$

继续递推三个隐藏状态在时刻3时对应的各自两个局部状态,此时观测状态为1:

$$ \delta_3(1) = \max_{1\leq j \leq 3}[\delta_2(j)a_{j1}]b_1(o_3) = \max_{1\leq j \leq 3}[0.028 \times 0.5, 0.0504 \times 0.3, 0.042\times 0.2] \times 0.5 = 0.00756 $$

$$ \Psi_3(1)=2 $$

$$ \delta_3(2) = \max_{1\leq j \leq 3}[\delta_2(j)a_{j2}]b_2(o_3) = \max_{1\leq j \leq 3}[0.028 \times 0.2, 0.0504\times 0.5, 0.042\times 0.3] \times 0.4 = 0.01008 $$

$$ \Psi_3(2)=2 $$

$$ \delta_3(3) = \max_{1\leq j \leq 3}[\delta_2(j)a_{j3}]b_3(o_3) = \max_{1\leq j \leq 3}[0.028 \times 0.3, 0.0504 \times 0.2, 0.042\times 0.5] \times 0.7 = 0.0147 $$

$$ \Psi_3(3)=3 $$

此时已经到最后的时刻,我们开始准备回溯。此时最大概率为$\delta_3(3)$,从而得到$i_3^* =3$
由于$\Psi_3(3)=3$,所以$i_2^* =3$, 而又由于$\Psi_2(3)=3$,所以$i_1^* =3$。从而得到最终的最可能的隐藏状态序列为:$(3,3,3)$
5. HMM模型维特比算法总结
如果大家看过之前写的文本挖掘的分词原理中的维特比算法,就会发现这两篇之中的维特比算法稍有不同。主要原因是在中文分词时,我们没有观察状态和隐藏状态的区别,只有一种状态。但是维特比算法的核心是定义动态规划的局部状态与局部递推公式,这一点在中文分词维特比算法和HMM的维特比算法是相同的,也是维特比算法的精华所在。
维特比算法也是寻找序列最短路径的一个通用方法,和dijkstra算法有些类似,但是dijkstra算法并没有使用动态规划,而是贪心算法。同时维特比算法仅仅局限于求序列最短路径,而dijkstra算法是通用的求最短路径的方法。

摘自:http://www.cnblogs.com/pinard/p/6991852.html

目录
相关文章
|
1天前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
30 11
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
16天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
17天前
|
存储 自然语言处理 算法
【算法精讲系列】MGTE系列模型,RAG实施中的重要模型
检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。
|
18天前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。
|
18天前
|
自然语言处理 监控 算法
【算法精讲系列】通义模型Prompt调优的实用技巧与经验分享
本文详细阐述了Prompt的设计要素,包括引导语、上下文信息等,还介绍了多种Prompt编写策略,如复杂规则拆分、关键信息冗余、使用分隔符等,旨在提高模型输出的质量和准确性。通过不断尝试、调整和优化,可逐步实现更优的Prompt设计。
|
18天前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
18天前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
117 1
|
1月前
|
机器学习/深度学习 自然语言处理 负载均衡
揭秘混合专家(MoE)模型的神秘面纱:算法、系统和应用三大视角全面解析,带你领略深度学习领域的前沿技术!
【8月更文挑战第19天】在深度学习领域,混合专家(Mixture of Experts, MoE)模型通过整合多个小型专家网络的输出以实现高性能。从算法视角,MoE利用门控网络分配输入至专家网络,并通过组合机制集成输出。系统视角下,MoE需考虑并行化、通信开销及负载均衡等优化策略。在应用层面,MoE已成功应用于Google的BERT模型、Facebook的推荐系统及Microsoft的语音识别系统等多个场景。这是一种强有力的工具,能够解决复杂问题并提升效率。
46 2
|
1月前
|
算法 语音技术
支付宝商业化广告算法问题之在ODL模型优化过程中,采取什么策略来提高模型的泛化能力呢
支付宝商业化广告算法问题之在ODL模型优化过程中,采取什么策略来提高模型的泛化能力呢
|
1月前
|
机器学习/深度学习 算法 搜索推荐
支付宝商业化广告算法问题之在DNN模型中,特征的重要性如何评估
支付宝商业化广告算法问题之在DNN模型中,特征的重要性如何评估