Spark Streaming 妙用之实现工作流调度器

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 之前有说过要设计一个工作流调度器。开发一个完善的工作流调度器应该并不是一件简单的事情。但是通过Spark Streaming(基于Transfomer架构的理念),我们可能能简化这些工作。我在这块并没有什么经验,这只是一个存在于脑海中的东西。
之前有说过要设计一个工作流调度器。开发一个完善的工作流调度器应该并不是一件简单的事情。但是通过Spark Streaming(基于Transfomer架构的理念),我们可能能简化这些工作。我在这块并没有什么经验,这只是一个存在于脑海中的东西。
下面是Azkaban的架构图:
396cca957b257dc1017011ec6c9f7307d3960391
也就是说要搭建一个稳定可靠的Azkaban的工作流调度器,你可能需要
  • 两台 互为主备MySQL
  • 两台Executor Server 
  • 一台Web Server 
  • 你需要做架构设计,考虑WebServer 和 Executor Server的通讯问题
  • 扩展性问题。Executor 能够动态调整?
  • 稳定性问题。毕竟24小时运行的
然而,我们其实是不需要关注这么多东西的。我们真正关注的是:
  • Web UI
  • 工作流的生成,解析,运行和存储
其他的都是基础设施。按照 Transfomer架构的设计理念,我们应该可以找到一个Estimator ,作为我们的基础设施,我们只要关注上面两点即可,不需要为部署,高可用,稳定等发愁。同时我们也希望譬如WebUI等工作不是从头开始,而是按部就班添加新功即可。所以有了Estimator,我们只要做三点:
  1. 实现业务逻辑,也就是工作流的生成,解析,运行和存储等操作。
  2. 实现管理页面逻辑
  3. 指定需要的资源cpu/内存,就能Run起来这个Transformer
我搜罗了一圈,发现Spark Streaming 是能够满足该需求的一个Estimator。
这得益于,Spark Streaming 从某个角度而言就是个定时任务调度系统,也就是我们说的微批处理。对于工作流调度器而言,无非就是每个周期(duration)在Driver端启动线程扫描MySQL,实现任务的分发和执行。
那如果实现一个类似Azkaban 能够的做的事情,前面我们提到,要做三件事情,分别对应为:
  1. 实现业务逻辑,也就是工作流的生成,解析,运行和存储等操作。其中生成,解析,存储 三个环节可以放在Driver端,也可以都放在Executor 端。也就是说:Driver的设计可重可轻。重的设计可由Driver读取MySQL 并且解析成工作流任务,然后发送给Executor 去执行。轻的设计Driver仅仅是读取MySQL,然后就简单将id分发给各个Executor,各个Executor 负责解析执行和反馈结果。
  2. 增强 Spark Streaming UI,添加管理页面,实现Azkaban Web Server类似界面。
  3. 按标准的Spark Streaming 程序提交该实现到集群即可完成部署。
我们看到,我们真正做到了只关注核心业务逻辑的实现,所谓部署,安装,运行等环节都实现了平台化(其实Estimator完成了)。 而且实现了资源的细粒度(CPU/内存)划分,而不再是以服务器为基本单元。 
事实上,我们也可以将一个Spark Streaming当做一个crontab 任务,这样就自然具有了一个分布式的crontab系统,并且提供更友好的管理,甚至能将任务本身融入到crontab中。

后话

Spark Streaming 不一定是最合适的Estimator,你可以自己实现一套类似的Estimator,最终形成所谓的 Azkaban On Yarn的程序。
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
88 0
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
138 0
【赵渝强老师】Spark Streaming中的DStream
本文介绍了Spark Streaming的核心概念DStream,即离散流。DStream通过时间间隔将连续的数据流转换为一系列不连续的RDD,再通过Transformation进行转换,实现流式数据的处理。文中以MyNetworkWordCount程序为例,展示了DStream生成RDD的过程,并附有视频讲解。
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例
96 0
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(一)
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(一)
84 0
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(二)
大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(二)
89 0
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(一)
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(一)
66 0
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(二)
大数据-100 Spark 集群 Spark Streaming DStream转换 黑名单过滤的三种实现方式(二)
57 0
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
64 0
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
90 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等