Kafka Zero-Copy 使用分析

简介: 之前有听过Zero-Copy 技术,而Kafka是典型的使用者。网上找了找,竟然没有找到合适的介绍文章。正好这段时间正在阅读Kafka的相关代码,于是有了这篇内容。这篇文章会简要介绍Zero-Copy技术在Kafka的使用情况,希望能给大家一定借鉴和学习样例。

前言

Kafka 我个人感觉是性能优化的典范。而且使用Scala开发,代码写的也很漂亮的。重点我觉得有四个:
  • NIO
  • Zero Copy
  • 磁盘顺序读写
  • Queue数据结构的极致使用

Zero-Copy 实际的原理,大家还是去Google下。这篇文章重点会分析这项技术是怎么被嵌入到Kafa里的。包含两部分:
  • Kafka在什么场景下用了这个技术
  • Zero-Copy 是如何被调用,并且发挥作用的。

Kafka在什么场景下使用该技术

答案是:
消息消费的时候 
包括外部Consumer以及Follower 从partiton Leader同步数据,都是如此。简单描述就是:
Consumer从Broker获取文件数据的时候,直接通过下面的方法进行channel到channel的数据传输。
java.nio.FileChannel.transferTo(
long position, 
long count,                                
WritableByteChannel target)`
也就是说你的数据源是一个Channel,数据接收端也是一个Channel(SocketChannel),则通过该方式进行数据传输,是直接在内核态进行的,避免拷贝数据导致的内核态和用户态的多次切换。

Kafka 如何使用Zero-Copy流程分析

估计看完这段内容,你对整个Kafka的数据处理流程也差不多了解了个大概。为了避免过于繁杂,以至于将整个Kafka的体系都拖进来,我们起始点从KafkaApis相关的类开始。

数据的生成

对应的类名称为:
kaka.server.KafkaApis
该类是负责真正的Kafka业务逻辑处理的。在此之前的,譬如 SocketServer等类似Tomcat服务器一样,侧重于交互,属于框架层次的东西。KafkaApis 则类似于部署在Tomcat里的应用。
def handle(request: RequestChannel.Request) {
       ApiKeys.forId(request.requestId) match {
        case ApiKeys.PRODUCE => handleProducerRequest(request)
        case ApiKeys.FETCH => handleFetchRequest(request)
        .....
handle 方法是所有处理的入口,然后根据请求的不同,有不同的处理逻辑。这里我们关注ApiKeys.FETCH这块,也就是有消费者要获取数据的逻辑。进入 handleFetchRequest方法,你会看到最后一行代码如下:
replicaManager.fetchMessages(  
       fetchRequest.maxWait.toLong, 
      fetchRequest.replicaId, 
      fetchRequest.minBytes,  
      authorizedRequestInfo,  
      sendResponseCallback)
ReplicaManager 包含所有主题的所有partition消息。大部分针对Partition的操作都是通过该类来完成的。
replicaManager.fetchMessages 这个方法非常的长。我们只关注一句代码:
val logReadResults = readFromLocalLog(fetchOnlyFromLeader, fetchOnlyCommitted, fetchInfo)
该方法获取本地日志信息数据。内部会调用kafka.cluster.Log对象的read方法:
 
 
log.read(offset, fetchSize, maxOffsetOpt)
Log 对象是啥呢?其实就是对应的一个Topic的Partition. 一个Partition是由很多端(Segment)组成的,这和Lucene非常相似。一个Segment就是一个文件。实际的数据自然是从这里读到的。代码如下:
val fetchInfo = entry.getValue.read(startOffset, maxOffset, maxLength, maxPosition)
这里的fetchInfo(FetchDataInfo)对象包含两个字段:
 
 
offsetMetadata
FileMessageSet 
FileMessageSet 其实就是用户在这个Partition这一次消费能够拿到的数据集合。当然,真实的数据还躺在byteBuffer里,并没有记在到内存中。FileMessageSet 里面包含了一个很重要的方法:
def writeTo(destChannel: GatheringByteChannel, writePosition: Long, size: Int): Int = {
    ......

    val bytesTransferred = (destChannel match {
      case tl: TransportLayer => tl.transferFrom(channel, position, count)
      case dc => channel.transferTo(position, count, dc)
    }).toInt

    bytesTransferred
  }
这里我们看到了久违的transferFrom方法。那么这个方法什么时候被调用呢?我们先搁置下,因为那个是另外一个流程。我们继续分析上面的代码。也就是接着从这段代码开始分析:
val logReadResults = readFromLocalLog(fetchOnlyFromLeader, fetchOnlyCommitted, fetchInfo)
获取到这个信息后,会执行如下操作:
val fetchPartitionData = logReadResults.mapValues(result =>  FetchResponsePartitionData(result.errorCode, result.hw, result.info.messageSet))
responseCallback(fetchPartitionData)
logReadResults 的信息被包装成FetchResponsePartitionData, FetchResponsePartitionData 包喊了我们的FileMessageSet 对象。还记得么,这个对象包含了我们要跟踪的tranferTo方法。然后FetchResponsePartitionData 会给responseCallback作为参数进行回调。
responseCallback 的函数签名如下(我去掉了一些我们不关心的信息):
def sendResponseCallback(responsePartitionData: Map[TopicAndPartition, FetchResponsePartitionData]) {
      val mergedResponseStatus = responsePartitionData ++ unauthorizedResponseStatus

      def fetchResponseCallback(delayTimeMs: Int) {
        val response = FetchResponse(fetchRequest.correlationId, mergedResponseStatus, fetchRequest.versionId, delayTimeMs)
        requestChannel.sendResponse(new RequestChannel.Response(request, new FetchResponseSend(request.connectionId, response)))
      }

    }
我们重点关注这个回调方法里的fetchResponseCallback。 我们会发现这里 FetchResponsePartitionData 会被封装成一个FetchResponseSend ,然后由requestChannel发送出去。
因为Kafka完全应用是NIO的异步机制,所以到这里,我们无法再跟进去了,需要从另外一部分开始分析。

数据的发送

前面只是涉及到数据的获取。读取日志,并且获得对应MessageSet对象。MessageSet 是一段数据的集合,但是该数据没有真实的被加载。这里会涉及到Kafka 如何将数据发送回Consumer端。
在SocketServer,也就是负责和所有的消费者打交道,建立连接的中枢里,会不断的进行poll操作
override def run() {
    startupComplete()
    while(isRunning) {
      try {
        // setup any new connections that have been queued up
        configureNewConnections()
        // register any new responses for writing
        processNewResponses()
首先会注册新的连接,如果有的话。接着就是处理新的响应了。还记得刚刚上面我们通过requestChannel把FetchResponseSend发出来吧。
private def processNewResponses() {
    var curr = requestChannel.receiveResponse(id)
    while(curr != null) {
      try {
        curr.responseAction match {         
          case RequestChannel.SendAction =>
            selector.send(curr.responseSend)
            inflightResponses += (curr.request.connectionId -> curr)

        }
      } finally {
        curr = requestChannel.receiveResponse(id)
      }
    }
  }
这里类似的,processNewResponses方法会先通过send方法把FetchResponseSend注册到selector上。 这个操作其实做的事情如下:
//SocketServer.scala    
public void send(Send send) {
        KafkaChannel channel = channelOrFail(send.destination());
        channel.setSend(send);
    }

//KafkaChannel.scala
   public void setSend(Send send) {
         this.send = send;          this.transportLayer.addInterestOps(SelectionKey.OP_WRITE);     
    }
为了方便看代码,我对代码做了改写。我们看到,其实send就是做了一个WRITE时间注册。这个是和NIO机制相关的。如果大家看的有障碍,不妨先学习下相关的机制。
回到 SocketServer 的run方法里,也就是上面已经贴过的代码:
  override def run() {
    startupComplete()
    while(isRunning) {
      try {
        // setup any new connections that have been queued up
        configureNewConnections()
        // register any new responses for writing
        processNewResponses()

        try {
          selector.poll(300)
        } catch {
          case...
        }
SocketServer 会poll队列,一旦对应的KafkaChannel 写操作ready了,就会调用KafkaChannel的write方法:
//KafkaChannel.scala
public Send write() throws IOException {
        if (send != null && send(send)) 
    }
//
//KafkaChannel.scala
private boolean send(Send send) throws IOException {
        send.writeTo(transportLayer);
        if (send.completed())
            transportLayer.removeInterestOps(SelectionKey.OP_WRITE);

        return send.completed();
    }
依然的,为了减少代码,我做了些调整,其中write会调用 send方法,对应的Send对象其实就是上面我们注册的FetchResponseSend 对象。
这段代码里真实发送数据的代码是send.writeTo(transportLayer);,
对应的writeTo方法为:
private val sends = new MultiSend(dest, JavaConversions.seqAsJavaList(fetchResponse.dataGroupedByTopic.toList.map {
    case(topic, data) => new TopicDataSend(dest, TopicData(topic,
                                                     data.map{case(topicAndPartition, message) => (topicAndPartition.partition, message)}))
    }))
override def writeTo(channel: GatheringByteChannel): Long = {
    .....    
     written += sends.writeTo(channel)
    ....
  }
这里我依然做了代码简化,只让我们关注核心的。 这里最后是调用了sends的writeTo方法,而sends 其实是个MultiSend。这个MultiSend 里有两个东西:
  • topicAndPartition.partition: 分区
  • message:FetchResponsePartitionData  

还记得这个FetchResponsePartitionData  么?我们的MessageSet 就被放在了FetchResponsePartitionData这个对象里。
TopicDataSend 也包含了sends,该sends 包含了 PartitionDataSend,而 PartitionDataSend则包含了FetchResponsePartitionData。
最后进行writeTo的时候,其实是调用了
//partitionData 就是 FetchResponsePartitionData
//messages 其实就是FileMessageSet
val bytesSent = partitionData.messages.writeTo(channel, messagesSentSize, messageSize - messagesSentSize)
如果你还记得的话,FileMessageSet 也有个writeTo方法,就是我们之前已经提到过的那段代码:
def writeTo(destChannel: GatheringByteChannel, writePosition: Long, size: Int): Int = {
    ......

    val bytesTransferred = (destChannel match {
      case tl: TransportLayer => tl.transferFrom(channel, position, count)
      case dc => channel.transferTo(position, count, dc)
    }).toInt

    bytesTransferred
  }
终于走到最底层了,最后其实是通过tl.transferFrom(channel, position, count) 来完成最后的数据发送的。这里你可能比较好奇,不应该是调用transferTo 方法么? transferFrom其实是Kafka自己封装的一个方法,最终里面调用的也是transerTo:
  @Override
    public long transferFrom(FileChannel fileChannel, long position, long count) throws IOException {
        return fileChannel.transferTo(position, count, socketChannel);
    }

总结

Kafka的整个调用栈还是非常绕的。尤其是引入了NIO的事件机制,有点类似Shuffle,把流程调用给切断了,无法简单通过代码引用来进行跟踪。Kafka还有一个非常优秀的机制就是DelayQueue机制,我们在分析的过程中,为了方便,把这块完全给抹掉了。
目录
相关文章
|
7月前
|
消息中间件 存储 网络协议
【Kafka】Kafka 性能高的原因分析
【4月更文挑战第5天】【Kafka】Kafka 性能高的原因分析
|
2月前
|
消息中间件 存储 缓存
美团面试: Kafka为啥能实现 10Wtps 到100Wtps ?kafka 如何实现零复制 Zero-copy?
40岁老架构师尼恩分享了Kafka如何实现高性能的秘诀,包括零拷贝技术和顺序写。Kafka采用mmap和sendfile两种零拷贝技术,前者用于读写索引文件,后者用于向消费者发送消息,减少数据在用户空间和内核空间间的拷贝次数,提高数据传输效率。此外,Kafka通过顺序写日志文件,避免了磁盘寻道和旋转延迟,进一步提升了写入性能。尼恩还提供了系列技术文章和PDF资料,帮助读者深入理解这些技术,提升面试竞争力。
美团面试: Kafka为啥能实现 10Wtps 到100Wtps ?kafka 如何实现零复制 Zero-copy?
|
2月前
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
50 4
|
2月前
|
消息中间件 druid 大数据
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
42 2
|
2月前
|
消息中间件 分布式计算 druid
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
62 1
|
7月前
|
消息中间件 存储 负载均衡
kafka底层原理分析
kafka底层原理分析
117 2
|
2月前
|
消息中间件 druid Kafka
从Apache Flink到Kafka再到Druid的实时数据传输,用于分析/决策
从Apache Flink到Kafka再到Druid的实时数据传输,用于分析/决策
96 0
|
3月前
|
数据采集 消息中间件 存储
实时数据处理的终极武器:Databricks与Confluent联手打造数据采集与分析的全新篇章!
【9月更文挑战第3天】本文介绍如何结合Databricks与Confluent实现高效实时数据处理。Databricks基于Apache Spark提供简便的大数据处理方式,Confluent则以Kafka为核心,助力实时数据传输。文章详细阐述了利用Kafka进行数据采集,通过Delta Lake存储并导入数据,最终在Databricks上完成数据分析的全流程,展示了一套完整的实时数据处理方案。
75 3
|
4月前
|
消息中间件 负载均衡 Kafka
Kafka 实现负载均衡与故障转移:深入分析 Kafka 的架构特点与实践
【8月更文挑战第24天】Apache Kafka是一款专为实时数据处理和流传输设计的高性能消息系统。其核心设计注重高吞吐量、低延迟与可扩展性,并具备出色的容错能力。Kafka采用分布式日志概念,通过数据分区及副本机制确保数据可靠性和持久性。系统包含Producer(消息生产者)、Consumer(消息消费者)和Broker(消息服务器)三大组件。Kafka利用独特的分区机制实现负载均衡,每个Topic可以被划分为多个分区,每个分区可以被复制到多个Broker上,确保数据的高可用性和可靠性。
118 2
|
4月前
|
消息中间件 安全 Kafka
"深入实践Kafka多线程Consumer:案例分析、实现方式、优缺点及高效数据处理策略"
【8月更文挑战第10天】Apache Kafka是一款高性能的分布式流处理平台,以高吞吐量和可扩展性著称。为提升数据处理效率,常采用多线程消费Kafka数据。本文通过电商订单系统的案例,探讨了多线程Consumer的实现方法及其利弊,并提供示例代码。案例展示了如何通过并行处理加快订单数据的处理速度,确保数据正确性和顺序性的同时最大化资源利用。多线程Consumer有两种主要模式:每线程一个实例和单实例多worker线程。前者简单易行但资源消耗较大;后者虽能解耦消息获取与处理,却增加了系统复杂度。通过合理设计,多线程Consumer能够有效支持高并发数据处理需求。
199 4

热门文章

最新文章