Hbase 学习(五) 调优

简介: 最近在狂啃hadoop的书籍,这部《hbase:权威指南》就进入我的视野里面了,啃吧,因为是英文的书籍,有些个人理解不对的地方,欢迎各位拍砖。

1.垃圾回收器调优

当我们往hbase写入数据,它首先写入memstore当中,当menstore的值大于hbase.hregion.memstore.flush.size参数中设置的值后,就会写入硬盘。
在hbase-env.sh文件中,我们可以设置HBASE_OPTS或者HBASE_REGIONSERVER_OPTS,后者只影响region server进程。
export HBASE_REGIONSERVER_OPTS="-Xmx8g -Xms8g -Xmn128m -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70 -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xloggc:$HBASE_HOME/logs/gc-$(hostname)-hbase.log"
《hbase权威指南》推荐了上述的写法,下面是从网上搜的,原书中为什么要这么设置的解释真心看不懂。
-Xmx8g -Xms8g –Xmn128m :最大堆内存8G,最小堆内存8G,新生代内存-Xmn128m。
-XX:+UseParNewGC : 设置对于新生代的垃圾回收器类型,这种类型是会停止JAVA进程,然后再进行回收的,但由于新生代体积比较小,持续时间通常只有几毫秒,因此可以接受。
-XX:+UseConcMarkSweepGC :设置老生代的垃圾回收类型,如果用新生代的那个会不合适,即会导致JAVA进程停止的时间太长,用这种不会停止JAVA进程,而是在JAVA进程运行的同时,并行的进行回收。
-XX:CMSInitiatingOccupancyFraction :设置CMS回收器运行的频率,避免前两个参数引起JAVA进程长时间停止,设置了这个之后,不需要停止JAVA进程,但是会提高CPU使用率。
最后两句是输出详细的日志。

2.MemStore-Local Allocation Buffer

MemStore-Local Allocation Buffer,是Cloudera在HBase 0.90.1时提交的一个patch里包含的特性。它基于Arena Allocation解决了HBase因Region flush导致的内存碎片问题。
MSLAB的实现原理(对照Arena Allocation,HBase实现细节):
  • MemstoreLAB为Memstore提供Allocator。
  • 创建一个2M(默认)的Chunk数组和一个chunk偏移量,默认值为0。
  • 当Memstore有新的KeyValue被插入时,通过KeyValue.getBuffer()取得data bytes数组。将data复制到Chunk数组起始位置为chunk偏移量处,并增加偏移量=偏移量+data.length。
  • 当一个chunk满了以后,再创建一个chunk。
  • 所有操作lock free,基于CMS原语。
优势:
  • KeyValue原始数据在minor gc时被销毁。
  • 数据存放在2m大小的chunk中,chunk归属于memstore。
  • flush时,只需要释放多个2m的chunks,chunk未满也强制释放,从而为Heap腾出了多个2M大小的内存区间,减少碎片密集程度。
开启MSLAB
hbase.hregion.memstore.mslab.enabled=true // 开启MSALB 
hbase.hregion.memstore.mslab.chunksize=2m // chunk的大小,越大内存连续性越好,但内存平均利用率会降低,要比插入的单元格的数据大一些。 
hbase.hregion.memstore.mslab.max.allocation=256K // 通过MSLAB分配的对象不能超过256K,否则直接在Heap上分配,256K够大了。

3.压缩存储

直接上图吧,说多了没用。
1eaa90b716a099f64fee0a08c6768eda0558db8f
推荐使用Snappy,性能最好,但是Snappy要单独安装,安装教程等我装成功了,再发一个文档出来吧。

4.优化Splits and Compactions

对于实时性要求稳定的系统来说,不定时的split和compact会使集群的响应时间出现比较大的波动,因此建议把split和compact关闭,手动进行操作,比如我们把hbase.hregion.max.filesize设置成100G(major compaction大概需要一小时,设置太大了,compaction会需要更多的时间),major compaction是必须要做的,群里有个网友给数据设置了过期时间,数据被逻辑删除了,但是没有释放硬盘空间,why?没有进行major compaction,最后是手动进行的合并。

5.平衡分布

在我们设计rowkey的时候,在前面加上随机数,比如0rowkey-1,1rowkey-2,0rowkey-3,1rowkey-4,去前面加上个随机数,就会有负载均衡的效果,但是如果这样做了,某个机器的数据还是比别的机器要多很多,这个怎么办呢?我们可以手动调用move()方法,通过shell或者HBaseAdmin类,或者调用unassign()方法,数据就会转移了。
目录
相关文章
|
SQL 存储 分布式数据库
bigdata-28-HBase基本调优策略
bigdata-28-HBase基本调优策略
183 0
|
存储 分布式数据库 数据库
Hbase学习二:Hbase数据特点和架构特点
Hbase学习二:Hbase数据特点和架构特点
283 0
|
12月前
|
存储 大数据 关系型数据库
HBase系列学习:基础知识
HBase系列学习:基础知识
255 1
HBase系列学习:基础知识
|
大数据 分布式数据库 Hbase
Hbase学习三:Hbase常用命令总结
Hbase学习三:Hbase常用命令总结
2840 0
|
存储 SQL 分布式计算
技术心得记录:深入学习HBase架构原理
技术心得记录:深入学习HBase架构原理
|
存储 缓存 大数据
大数据HBase调优
大数据HBase调优
203 1
|
SQL 缓存 Java
【大数据】HBase入门学习 3
【大数据】HBase入门学习
247 0
|
存储 大数据 分布式数据库
【大数据】HBase入门学习 2
【大数据】HBase入门学习
284 0
|
存储 分布式计算 Hadoop
【大数据】HBase入门学习 1
【大数据】HBase入门学习
245 0
|
存储 NoSQL 关系型数据库
每日积累【Day 3】Hbase架构深入学习
每日积累【Day 3】Hbase架构深入学习
每日积累【Day 3】Hbase架构深入学习