ACL 2018最佳论文公布!计算语言学最前沿研究都在这里了

简介: ACL 会议是计算语言学领域的首要会议,广泛涉及自然语言的计算方法及其各类研究领域。ACL 2018将于7月15日至20日在澳大利亚墨尔本举行。昨天,ACL官网公布了本届大会的最佳论文,包括3篇最佳长论文和2篇最佳短论文,新智元带来介绍。

国际计算语言学协会 (ACL,The Association for Computational Linguistics),是世界上影响力最大、最具活力的国际学术组织之一,其会员遍布世界各地。ACL 会议是计算语言学领域的首要会议,广泛涉及自然语言的计算方法及其各类研究领域。计算语言学协会第56届年会,也即ACL 2018,将于7月15日至20日在澳大利亚墨尔本墨尔本会展中心举行。

昨天,ACL官网公布了本届大会的最佳论文,包括3篇长论文和2篇短论文。

Best Long Papers

d47e62d2b349aca45e42305ed6714efbe5ed61d9 Finding syntax in human encephalography with beam search. John Hale, Chris Dyer, Adhiguna Kuncoro and Jonathan Brennan.
d47e62d2b349aca45e42305ed6714efbe5ed61d9 Learning to Ask Good Questions: Ranking Clarification Questions using Neural Expected Value of Perfect Information. Sudha Rao and Hal Daumé III.
d47e62d2b349aca45e42305ed6714efbe5ed61d9 Let’s do it “again”: A First Computational Approach to Detecting Adverbial Presupposition Triggers. Andre Cianflone, Yulan Feng, Jad Kabbara and Jackie Chi Kit Cheung.

Best Short Papers

d47e62d2b349aca45e42305ed6714efbe5ed61d9 Know What You Don’t Know: Unanswerable Questions for SQuAD. Pranav Rajpurkar, Robin Jia and Percy Liang
d47e62d2b349aca45e42305ed6714efbe5ed61d9 ‘Lighter’ Can Still Be Dark: Modeling Comparative Color Descriptions. Olivia Winn and Smaranda Muresan

根据ACL官网,今年的会议竞争超级激烈:一共接受了1018份长文中的258篇和526篇短篇论文中的126篇,总体接受率为24.9%。

最佳论文——长论文(3篇)

1. Finding syntax in human encephalography with beam search.

(使用beam search在人体脑电图中查找语法)

作者:John Hale, Chris Dyer, Adhiguna Kuncoro & Jonathan Brennan.

(论文内容尚未公布)

2. Learning to Ask Good Questions: Ranking Clarification Questions using Neural Expected Value of Perfect Information.

(学习提问好问题:使用完美信息的神经期望值排列澄清性问题。)

作者:Sudha Rao & Hal Daumé III

论文地址:https://arxiv.org/pdf/1805.04655.pdf

6f880b9fa9cf4e3b60ea4749eef302d6d33cbc69

论文摘要

提问(inquiry)是沟通的基础。除非能提出问题,机器无法有效地与人类合作。在这项工作中,我们建立了一个神经网络模型来排序澄清性问题。我们的模型受到完美信息期望值(expected value of perfect information)的启发:一个问题好不好在于其预期答案是否有用。我们使用来自StackExchange的数据来研究这个问题。StackExchange是一个丰富的在线资源,人们在上面提问一些澄清式的问题,以便更好地为原始的帖子提供帮助。我们创建一个由大约77k帖子组成的数据集,其中每个帖子包含一个问题和回答。我们在500个样本的数据集上对我们的模型进行了评估,并与人类专家的判断进行对比,证明了模型在控制基线上得到重大改进。

a50cc73bd01ad0e84983a300cdfb46ff7a3e5c31

3. Let’s do it “again”: A First Computational Approach to Detecting Adverbial Presupposition Triggers.

作者: Andre Cianflone, Yulan Feng, Jad Kabbara and Jackie Chi Kit Cheung.

论文地址:https://www.cs.mcgill.ca/~jkabba/acl2018paper.pdf

523da859b29cb4e03a15effa4cbec42ac4224c57

论文摘要

在这篇论文中,我们提出一个检测状语预设的触发器的任务,例如“also”或“again”这类词。解决个任务需要在话语语境中检测重复或类似的事件,可以应用在自然语言生成任务(例如总结和对话系统)任务。我们为该任务创建了两个新的数据集,数据来源于Penn Treebank和Annotated English Gigaword两个语料库,以及为此任务量身定制的新的注意力机制。我们的注意力机制增加了一个基线递归神经网络,而且不需要额外的可训练参数,从而最大限度地减少了计算成本。我们的工作证明,我们的模型在统计学上优于一些基线模型,包括基于LSTM的语言模型。

a84e03b33c7a246fc3452c620a4f7801dd8c3baf

最佳论文——短论文(2篇)

1. Know What You Don’t Know: Unanswerable Questions for SQuAD.

作者:Pranav Rajpurkar, Robin Jia and Percy Liang

(论文内容未公开)

2. ‘Lighter’ Can Still Be Dark: Modeling Comparative Color Descriptions.

作者:Olivia Winn and Smaranda Muresan

(论文内容未公开)

今年的ACL开设了一个“meta conference”环节,讨论双盲评审以及 ArXiv 预印版相关话题。许多研究表明,当工作的客观价值保持不变时,单盲评审会导致评审人更偏向于某些类型的研究人员。因此,所有 ACL 会议和大多数研讨会都使用双盲评审制度。而以 ArXiv 为代表的在线预印服务器的流行,在一定程度上威胁到了双盲评审过程。

上周,ACL更新了其会议论文的投稿、评审和引用政策。其中规定,为了双盲评审的有效性,禁止投稿论文在截止日期前的1个月时间内在 arXiv 等平台公开预印本。这些新要求引起一些质疑双盲评审有效性的声音,不过,多数研究人员表示支持新政。

因此,其他几篇最佳论文,可能需要等到7月份会议召开后公开。


原文发布时间为:2018-06-11

本文作者:闻菲、小芹

本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”。

原文链接:ACL 2018最佳论文公布!计算语言学最前沿研究都在这里了

相关文章
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
清华EconAgent获ACL 2024杰出论文:大模型智能体革新计算经济学研究范式
近年来,人工智能的迅猛发展推动了数据驱动建模在宏观经济学领域的应用。清华大学研究团队提出的EconAgent模型,基于大型语言模型,具备类似人类的决策能力,能更准确地模拟个体行为对宏观经济系统的影响。EconAgent在个体异质性、市场动态及宏观经济因素模拟方面表现出色,并具有更好的可解释性和灵活性。然而,其高计算复杂度和部分决策过程的不透明性仍需进一步解决。该成果已在ACL 2024会议上获得杰出论文奖。论文链接:https://arxiv.org/abs/2310.10436v4
132 3
|
5月前
|
人工智能
ACL 2024 Oral:大模型也会被忽悠?揭秘AI的信念之旅
【8月更文挑战第28天】清华大学、上海交通大学、斯坦福大学和南洋理工大学的研究团队最新研究表明,即使是在训练过程中积累了大量知识的大语言模型(LLMs),如ChatGPT和GPT-4,在面对误导性信息时仍可能产生错误信念。研究者为此创建了Farm数据集,以系统性地生成误导信息并测试LLMs在说服性对话中的表现。结果显示,即使是先进如GPT-4,其信念也有20.7%的概率被改变。该研究不仅揭示了LLMs潜在的脆弱性,还提供了评估其鲁棒性的方法,对未来提升LLMs的安全性和准确性具有重要启示作用。论文详细内容可见[此处链接]。
64 5
|
5月前
|
机器学习/深度学习 存储 人工智能
【ACL2024】阿里云人工智能平台PAI多篇论文入选ACL2024
近期,阿里云人工智能平台PAI的多篇论文在ACL2024上入选。论文成果是阿里云与阿里集团安全部、华南理工大学金连文教授团队、华东师范大学何晓丰教授团队共同研发。ACL(国际计算语言学年会)是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台PAI在自然语言处理和多模态算法、算法框架能力方面研究获得了学术界认可。
|
8月前
|
机器学习/深度学习 自然语言处理 算法
【ACL2023获奖论文】比你想的更弱:对弱监督学习的批判性审视
【ACL2023获奖论文】比你想的更弱:对弱监督学习的批判性审视
59 0
|
机器学习/深度学习 人工智能 编解码
NLP领域再创佳绩!阿里云机器学习平台 PAI 多篇论文入选 ACL 2023
阿里云机器学习平台PAI主导的多篇论文在ACL 2023 Industry Track上入选。
|
机器学习/深度学习 人工智能 自然语言处理
NLP还能做什么?北航、ETH、港科大、中科院等多机构联合发布百页论文,系统阐述后ChatGPT技术链(1)
NLP还能做什么?北航、ETH、港科大、中科院等多机构联合发布百页论文,系统阐述后ChatGPT技术链
147 0
|
机器学习/深度学习 人工智能 自然语言处理
NLP还能做什么?北航、ETH、港科大、中科院等多机构联合发布百页论文,系统阐述后ChatGPT技术链(2)
NLP还能做什么?北航、ETH、港科大、中科院等多机构联合发布百页论文,系统阐述后ChatGPT技术链
134 0
|
人工智能 JSON 运维
理论用于实践!华为配置管理研究获SIGCOMM 2022最佳论文奖(1)
理论用于实践!华为配置管理研究获SIGCOMM 2022最佳论文奖
160 0
|
机器学习/深度学习 人工智能 运维
理论用于实践!华为配置管理研究获SIGCOMM 2022最佳论文奖(2)
理论用于实践!华为配置管理研究获SIGCOMM 2022最佳论文奖
152 0
|
机器学习/深度学习 编解码 人工智能
华为诺亚调研200多篇文献,视觉Transformer综述入选TPAMI 2022
华为诺亚调研200多篇文献,视觉Transformer综述入选TPAMI 2022
322 0