MySQL多数据源笔记4-Mycat中间件实战

本文涉及的产品
Serverless 应用引擎 SAE,800核*时 1600GiB*时
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: Mycat 是数据库中间件,就是介于数据库与应用之间,进行数据处理与交互的中间服 务。由于前面讲的对数据进行分片处理之后,从原有的一个库,被切分为多个分片数据库,所有的分片数据库集 群构成了整个完整的数据库存储。

Mycat 是数据库中间件,就是介于数据库与应用之间,进行数据处理与交互的中间服 务。由于前面讲的对数据进行分片处理之后,从原有的一个库,被切分为多个分片数据库,所有的分片数据库集 群构成了整个完整的数据库存储。

如下图:

如上图所表示,数据被分到多个分片数据库后,应用如果需要读取数据,就要需要处理多个数据源的数据。

如果没有数据库中间件,那么应用将直接面对分片集群,数据源切换、事务处理、数据聚合都需要应用直接处 理,原本该是专注于业务的应用,将会花大量的工作来处理分片后的问题,最重要的是每个应用处理将是完全的 重复造轮子。

所以有了数据库中间件,应用只需要集中与业务处理,大量的通用的数据聚合,事务,数据源切换都由中间 件来处理,中间件的性能与处理能力将直接决定应用的读写性能,所以一款好的数据库中间件至关重要。

 

第一部MyCat的环境搭建。

首先去官网下载MyCat,官网地址为:dl.mycat.io

注意必须下载发行版,也就是说带有RELEASE字眼的就是发行版,BETA是测试版。选择windows版本来学习即可。

 

我们主要关注的是MyCat的conf目录如下图:

 

 我们打开schema.xml文件中看一下里面的配置都是些什么意思:配置文件如下:

<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">

    <schema name="TESTDB" checkSQLschema="false" sqlMaxLimit="100">
        <!-- auto sharding by id (long) -->
        <table name="travelrecord" dataNode="dn1,dn2,dn3" rule="auto-sharding-long" />

        <!-- global table is auto cloned to all defined data nodes ,so can join
            with any table whose sharding node is in the same data node -->
        <table name="company" primaryKey="ID" type="global" dataNode="dn1,dn2,dn3" />
        <table name="goods" primaryKey="ID" type="global" dataNode="dn1,dn2" />
        <!-- random sharding using mod sharind rule -->
        <table name="hotnews" primaryKey="ID" autoIncrement="true" dataNode="dn1,dn2,dn3"
               rule="mod-long" />
        <!-- <table name="dual" primaryKey="ID" dataNode="dnx,dnoracle2" type="global"
            needAddLimit="false"/> <table name="worker" primaryKey="ID" dataNode="jdbc_dn1,jdbc_dn2,jdbc_dn3"
            rule="mod-long" /> -->
        <table name="employee" primaryKey="ID" dataNode="dn1,dn2"
               rule="sharding-by-intfile" />
        <table name="customer" primaryKey="ID" dataNode="dn1,dn2"
               rule="sharding-by-intfile">
            <childTable name="orders" primaryKey="ID" joinKey="customer_id"
                        parentKey="id">
                <childTable name="order_items" joinKey="order_id"
                            parentKey="id" />
            </childTable>
            <childTable name="customer_addr" primaryKey="ID" joinKey="customer_id"
                        parentKey="id" />
        </table>
        <!-- <table name="oc_call" primaryKey="ID" dataNode="dn1$0-743" rule="latest-month-calldate"
            /> -->
    </schema>
    <!-- <dataNode name="dn1$0-743" dataHost="localhost1" database="db$0-743"
        /> -->
    <dataNode name="dn1" dataHost="localhost1" database="db1" />
    <dataNode name="dn2" dataHost="localhost1" database="db2" />
    <dataNode name="dn3" dataHost="localhost1" database="db3" />
    <!--<dataNode name="dn4" dataHost="sequoiadb1" database="SAMPLE" />
     <dataNode name="jdbc_dn1" dataHost="jdbchost" database="db1" />
    <dataNode    name="jdbc_dn2" dataHost="jdbchost" database="db2" />
    <dataNode name="jdbc_dn3"     dataHost="jdbchost" database="db3" /> -->
    <dataHost name="localhost1" maxCon="1000" minCon="10" balance="0"
              writeType="0" dbType="mysql" dbDriver="native" switchType="1"  slaveThreshold="100">
        <heartbeat>select user()</heartbeat>
        <!-- can have multi write hosts -->
        <writeHost host="hostM1" url="localhost:3306" user="root"
                   password="123456">
            <!-- can have multi read hosts -->
            <readHost host="hostS2" url="192.168.1.200:3306" user="root" password="xxx" />
        </writeHost>
        <writeHost host="hostS1" url="localhost:3316" user="root"
                   password="123456" />
        <!-- <writeHost host="hostM2" url="localhost:3316" user="root" password="123456"/> -->
    </dataHost>
    <!--
        <dataHost name="sequoiadb1" maxCon="1000" minCon="1" balance="0" dbType="sequoiadb" dbDriver="jdbc">
        <heartbeat>         </heartbeat>
         <writeHost host="hostM1" url="sequoiadb://1426587161.dbaas.sequoialab.net:11920/SAMPLE" user="jifeng"     password="jifeng"></writeHost>
         </dataHost>

      <dataHost name="oracle1" maxCon="1000" minCon="1" balance="0" writeType="0"     dbType="oracle" dbDriver="jdbc"> <heartbeat>select 1 from dual</heartbeat>
        <connectionInitSql>alter session set nls_date_format='yyyy-mm-dd hh24:mi:ss'</connectionInitSql>
        <writeHost host="hostM1" url="jdbc:oracle:thin:@127.0.0.1:1521:nange" user="base"     password="123456" > </writeHost> </dataHost>

        <dataHost name="jdbchost" maxCon="1000"     minCon="1" balance="0" writeType="0" dbType="mongodb" dbDriver="jdbc">
        <heartbeat>select     user()</heartbeat>
        <writeHost host="hostM" url="mongodb://192.168.0.99/test" user="admin" password="123456" ></writeHost> </dataHost>

        <dataHost name="sparksql" maxCon="1000" minCon="1" balance="0" dbType="spark" dbDriver="jdbc">
        <heartbeat> </heartbeat>
         <writeHost host="hostM1" url="jdbc:hive2://feng01:10000" user="jifeng"     password="jifeng"></writeHost> </dataHost> -->

    <!-- <dataHost name="jdbchost" maxCon="1000" minCon="10" balance="0" dbType="mysql"
        dbDriver="jdbc"> <heartbeat>select user()</heartbeat> <writeHost host="hostM1"
        url="jdbc:mysql://localhost:3306" user="root" password="123456"> </writeHost>
        </dataHost> -->
</mycat:schema>

 

schema 标签用于定义 MyCat 实例中的逻辑库,MyCat 可以有多个逻辑库,每个逻辑库都有自己的相关配 置。可以使用 schema 标签来划分这些不同的逻辑库。 如果不配置 schema 标签,所有的表配置,会属于同一个默认的逻辑库。

对于我们开发人员来说,我们知道连接到mycat的逻辑库,后面拖着多少个MySQL我们不管的,我们只需要连接到MyCat这个逻辑库,对于后面的分库分表,MyCat给我们屏蔽了分库分表的复杂性。

 

table 标签定义了 MyCat 中的逻辑表,所有需要拆分的表都需要在这个标签中定义。

    table标签里面的子标签childTabel表示这个表跟父table分在一起,不会被拆散,也就是前面所说的分库分表之前,要考虑好表的关联,不然否则就面临跨库Join连接问题。

    如下代码:

    

<table name="customer" primaryKey="ID" dataNode="dn1,dn2"
               rule="sharding-by-intfile">
            <childTable name="orders" primaryKey="ID" joinKey="customer_id"
                        parentKey="id">
                <childTable name="order_items" joinKey="order_id"
                            parentKey="id" />
            </childTable>
            <childTable name="customer_addr" primaryKey="ID" joinKey="customer_id"
                        parentKey="id" />
        </table>

 

    table中的type属性的global表示该表为全局表。即前面所提到每一个节点可以读到这个表,这对是否在分库分表中的join查询很关键。而且这属性表示不会进行分片,即全局表使用,每个节点都有。代码如下:

    

<table name="goods" primaryKey="ID" type="global" dataNode="dn1,dn2" />

 

  

    table中的dataNode属性表示你要分片,要分到那几个节点上去,rule代表着分库分表的规则。他的分片分表规则在rule.xml文件中,你可以在Table标签的rule属性设置复合

    自己的分片分表规则,都在rule.xml中对应着如下图:

    

 

      

      

 <dataNode>标签,标签中的name属性表示节点的名字。dataHost属性表示对应MySQL的数据库连接,database属性表示Mysql数据库名,代码如下:

  

<dataNode name="dn1" dataHost="localhost1" database="db1" />

 

<dataHost>标签节点表示对应MySQL的数据库连接对应配置,什么最大连接数,最小连接数之类的属性。

<dataHost>标签中的子标签<hearbeat>表示存活检测,

<dataHost>标签中的子标签<writeHost>和<readHost>表示MySQL中的读写分离,而<writeHost>子标签中还有<readHost>子标签,表示写操作的数据库还要承担一部分读库的压力。

代码如下:

<dataHost name="localhost1" maxCon="1000" minCon="10" balance="0"
              writeType="0" dbType="mysql" dbDriver="native" switchType="1"  slaveThreshold="100">
        <heartbeat>select user()</heartbeat>
        <!-- can have multi write hosts -->
        <writeHost host="hostM1" url="localhost:3306" user="root"
                   password="123456">
            <!-- can have multi read hosts -->
            <readHost host="hostS2" url="192.168.1.200:3306" user="root" password="xxx" />
        </writeHost>
        <writeHost host="hostS1" url="localhost:3316" user="root"
                   password="123456" />
        <!-- <writeHost host="hostM2" url="localhost:3316" user="root" password="123456"/> -->
    </dataHost>

 

 

下面进行读写分离的演示:

  第一步先注释schma里面的配置如下图:

 

接着在修改<dataNode>,<dataHost>节点信息,详细信息在图中说明。如下图:

 

   

 接着再还要修改mycat中server.xml文件,我这里没有使用zookeeper所以要把zookeeper协调切换关闭。因为我们只是在本地玩,如下图:

接着在继续修改server.xml文件。如下图:

接着就是启动了,启动之前要进行环境变量设置如下:

 

 接着就是设置一起启动参数了,在startup_newrap.bat文件中修改如下图:

 

 接着就是启动了,如下:

 

接着就是用图形化工具连接MyCat了。如下图:

 

接着自己在图形化界面中修改数据库,这里就不演示了。如下:

 

 

接着mycat进行分库分表演示:

 

注意一定要在每一个mysql中建立好tabel标签对应的travelrecord表,而表中必须要有id这属性,

如下图:

 

 

 注意一定要在每一个mysql中建立好tabel标签对应的travelrecord表,而表中必须要有id这属性,因为上面的分库分表策略是根据id分的,在rule.xml中找到分表策略如下:

 

 在根据rang-long在rule.xml找到对应的function,如下图:

在找到autoparitition-long.txt文件,看到如下分库分表了,如下图:

然后在分别对应修改dataNode和dataHost标签,如下图:

 

 

 

最后进行分库分表测试

比如490M=4900000分到第0个节点,在mycat总设置,如下图:

接着去查看第0个节点会有一条数据分到这里,其他节点没有。

 如果使用上面的分库分表策略不能超过范autoparitition-long.txt里面配置的范围的。

其他的分配策略,还可以用CRC32slot策略类似于redis集群中的Slot,如下:

 

 

 还可以用rang-mod求模来分,如下:

然后找partition-range-mod.txt,可以具体,如下:

其他就不演示了。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
12天前
|
缓存 中间件 网络架构
Python Web开发实战:高效利用路由与中间件提升应用性能
在Python Web开发中,路由和中间件是构建高效、可扩展应用的核心组件。路由通过装饰器如`@app.route()`将HTTP请求映射到处理函数;中间件则在请求处理流程中插入自定义逻辑,如日志记录和验证。合理设计路由和中间件能显著提升应用性能和可维护性。本文以Flask为例,详细介绍如何优化路由、避免冲突、使用蓝图管理大型应用,并通过中间件实现缓存、请求验证及异常处理等功能,帮助你构建快速且健壮的Web应用。
12 1
|
1月前
|
监控 关系型数据库 MySQL
zabbix agent集成percona监控MySQL的插件实战案例
这篇文章是关于如何使用Percona监控插件集成Zabbix agent来监控MySQL的实战案例。
32 2
zabbix agent集成percona监控MySQL的插件实战案例
|
2月前
|
SQL 关系型数据库 MySQL
干货!python与MySQL数据库的交互实战
干货!python与MySQL数据库的交互实战
|
2月前
|
存储 关系型数据库 MySQL
实战!MySQL主从复制一键搭建脚本分享
实战!MySQL主从复制一键搭建脚本分享
31 2
|
2月前
|
SQL 存储 关系型数据库
MySQL备份:mydumper 备份恢复工具生产实战
MySQL备份:mydumper 备份恢复工具生产实战
|
2月前
|
关系型数据库 MySQL Linux
【一键解锁神秘力量!】CentOS 7 通过编译源码方式安装 MySQL 数据库 —— 从零到英雄的数据库安装实战秘籍!
【8月更文挑战第9天】随着业务增长,对数据库的需求日益提高。在 CentOS 7 中,通过编译源码安装 MySQL 可提供更高定制性和灵活性。本文详细介绍从准备环境、下载源码、配置编译参数到安装 MySQL 的全过程,并对比 RPM 包安装方法,帮助读者根据需求选择合适方案。实践时需注意备份数据、选择合适版本、确保安全性和调优性能等要点。
152 1
|
2月前
|
存储 关系型数据库 MySQL
MySQL数据库进阶实战:解锁性能飙升秘籍,从菜鸟到高手的华丽蜕变,让数据操作如行云流水!
【8月更文挑战第5天】MySQL是最流行的开源关系型数据库之一,在Web开发与数据分析等领域广泛应用。本文通过实战代码示例,深入探讨MySQL进阶技能:包括索引优化以提升查询性能;利用JOIN与子查询处理多表关联数据;通过事务处理确保数据一致性;使用存储过程与函数封装复杂逻辑以便重用;设置触发器自动执行特定任务以维护数据完整性。掌握这些技能能显著提高数据处理效率与系统性能。
44 5
|
2月前
|
canal 关系型数据库 MySQL
"揭秘阿里数据同步黑科技Canal:从原理到实战,手把手教你玩转MySQL数据秒级同步,让你的数据处理能力瞬间飙升,成为技术界的新晋网红!"
【8月更文挑战第18天】Canal是一款由阿里巴巴开源的高性能数据同步系统,它通过解析MySQL的增量日志(Binlog),提供低延迟、可靠的数据订阅和消费功能。Canal模拟MySQL Slave与Master间的交互协议来接收并解析Binary Log,支持数据的增量同步。配置简单直观,包括Server和Instance两层配置。在实战中,Canal可用于数据库镜像、实时备份等多种场景,通过集成Canal Client可实现数据的消费和处理,如更新缓存或写入消息队列。
383 0
|
3月前
|
监控 中间件 关系型数据库
中间件MySQL性能瓶颈
【7月更文挑战第13天】
47 12
|
2月前
|
存储 关系型数据库 MySQL
MySQL中的DISTINCT与GROUP BY:效率之争与实战应用
【8月更文挑战第12天】在数据库查询优化中,DISTINCT和GROUP BY常常被用来去重或聚合数据,但它们在实现方式和性能表现上却各有千秋。本文将深入探讨两者在MySQL中的效率差异,结合工作学习中的实际案例,为您呈现一场技术干货分享。
244 0

推荐镜像

更多
下一篇
无影云桌面