ART世界探险(13) - 初入dex2oat

简介: dex2oat从main到编译每个类的流程

ART世界探险(13) - 初入dex2oat

dex2oat流程分析

进入整个流程之前,我们先看一下地图,大致熟悉一下我们下一步要去哪里:
dex2oat main

主函数

dex2oat的main函数,直接是dex2oat工厂函数的封装。

int main(int argc, char** argv) {
  int result = art::dex2oat(argc, argv);
  // Everything was done, do an explicit exit here to avoid running Runtime destructors that take
  // time (bug 10645725) unless we're a debug build or running on valgrind. Note: The Dex2Oat class
  // should not destruct the runtime in this case.
  if (!art::kIsDebugBuild && (RUNNING_ON_VALGRIND == 0)) {
    exit(result);
  }
  return result;
}

构造函数

我们先看一下流程图,然后对照到代码看。

dex2oat流程图

dex2oat的整个逻辑是很清晰的:
首先是不得不做一个arm上的workaround,这个与我们分析的主线暂时无关,了解一下就可以了。
然后所做的事情:

  1. 构造Dex2oat对象
  2. 处理命令行参数
  3. 先行判断对于文件是否有写的权限
  4. 打印命令行参数
  5. 判断dex2oat的setup是否完成
  6. 根据是否image分别调用CompileImage或CompileApp的处理

代码里面注释很详细,可读性很好,我们看一下:

static int dex2oat(int argc, char** argv) {
  b13564922();

  TimingLogger timings("compiler", false, false);

  Dex2Oat dex2oat(&timings);

  // Parse arguments. Argument mistakes will lead to exit(EXIT_FAILURE) in UsageError.
  dex2oat.ParseArgs(argc, argv);

  // Check early that the result of compilation can be written
  if (!dex2oat.OpenFile()) {
    return EXIT_FAILURE;
  }

  // Print the complete line when any of the following is true:
  //   1) Debug build
  //   2) Compiling an image
  //   3) Compiling with --host
  //   4) Compiling on the host (not a target build)
  // Otherwise, print a stripped command line.
  if (kIsDebugBuild || dex2oat.IsImage() || dex2oat.IsHost() || !kIsTargetBuild) {
    LOG(INFO) << CommandLine();
  } else {
    LOG(INFO) << StrippedCommandLine();
  }

  if (!dex2oat.Setup()) {
    dex2oat.EraseOatFile();
    return EXIT_FAILURE;
  }

  if (dex2oat.IsImage()) {
    return CompileImage(dex2oat);
  } else {
    return CompileApp(dex2oat);
  }
}
}  // namespace art

CompileApp

处理命令行参数等细节我们后面再补,我们先跃进到核心逻辑CompileApp中。
我们可以看到,基本上还是对于dex2oat.Compile的封装,后面都是对写文件和计时的处理。

static int CompileApp(Dex2Oat& dex2oat) {
  dex2oat.Compile();

  // Create the app oat.
  if (!dex2oat.CreateOatFile()) {
    dex2oat.EraseOatFile();
    return EXIT_FAILURE;
  }

  // Do not close the oat file here. We might haven gotten the output file by file descriptor,
  // which we would lose.
  if (!dex2oat.FlushOatFile()) {
    return EXIT_FAILURE;
  }

  // When given --host, finish early without stripping.
  if (dex2oat.IsHost()) {
    if (!dex2oat.FlushCloseOatFile()) {
      return EXIT_FAILURE;
    }

    dex2oat.DumpTiming();
    return EXIT_SUCCESS;
  }

  // Copy unstripped to stripped location, if necessary. This will implicitly flush & close the
  // unstripped version. If this is given, we expect to be able to open writable files by name.
  if (!dex2oat.CopyUnstrippedToStripped()) {
    return EXIT_FAILURE;
  }

  // Flush and close the file.
  if (!dex2oat.FlushCloseOatFile()) {
    return EXIT_FAILURE;
  }

  dex2oat.DumpTiming();
  return EXIT_SUCCESS;
}

CompileImage

然后我们再看一下完全是一个模子里面出来的CompileImage.

static int CompileImage(Dex2Oat& dex2oat) {
  dex2oat.Compile();

  // Create the boot.oat.
  if (!dex2oat.CreateOatFile()) {
    dex2oat.EraseOatFile();
    return EXIT_FAILURE;
  }

  // Flush and close the boot.oat. We always expect the output file by name, and it will be
  // re-opened from the unstripped name.
  if (!dex2oat.FlushCloseOatFile()) {
    return EXIT_FAILURE;
  }

  // Creates the boot.art and patches the boot.oat.
  if (!dex2oat.HandleImage()) {
    return EXIT_FAILURE;
  }

  // When given --host, finish early without stripping.
  if (dex2oat.IsHost()) {
    dex2oat.DumpTiming();
    return EXIT_SUCCESS;
  }

  // Copy unstripped to stripped location, if necessary.
  if (!dex2oat.CopyUnstrippedToStripped()) {
    return EXIT_FAILURE;
  }

  // FlushClose again, as stripping might have re-opened the oat file.
  if (!dex2oat.FlushCloseOatFile()) {
    return EXIT_FAILURE;
  }

  dex2oat.DumpTiming();
  return EXIT_SUCCESS;
}

Compile

Java不同于其它很多编译型语言的一点是在于它有ClassLoader。在做编译之前,先要对ClassLoader进行预处理。
然后,就创建一个CompilerDriver对象,并调用driver的ComileAll来完成编译。

  // Create and invoke the compiler driver. This will compile all the dex files.
  void Compile() {
    TimingLogger::ScopedTiming t("dex2oat Compile", timings_);
    compiler_phases_timings_.reset(new CumulativeLogger("compilation times"));

    // Handle and ClassLoader creation needs to come after Runtime::Create
    jobject class_loader = nullptr;
    Thread* self = Thread::Current();
    if (!boot_image_option_.empty()) {
      ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
      OpenClassPathFiles(runtime_->GetClassPathString(), dex_files_, &class_path_files_);
      ScopedObjectAccess soa(self);

      // Classpath: first the class-path given.
      std::vector<const DexFile*> class_path_files;
      for (auto& class_path_file : class_path_files_) {
        class_path_files.push_back(class_path_file.get());
      }

      // Store the classpath we have right now.
      key_value_store_->Put(OatHeader::kClassPathKey,
                            OatFile::EncodeDexFileDependencies(class_path_files));

      // Then the dex files we'll compile. Thus we'll resolve the class-path first.
      class_path_files.insert(class_path_files.end(), dex_files_.begin(), dex_files_.end());

      class_loader = class_linker->CreatePathClassLoader(self, class_path_files);
    }

    driver_ = new CompilerDriver(compiler_options_.get(),
                                 verification_results_,
                                 &method_inliner_map_,
                                 compiler_kind_,
                                 instruction_set_,
                                 instruction_set_features_.get(),
                                 image_,
                                 image_classes_.release(),
                                 compiled_classes_.release(),
                                 nullptr,
                                 thread_count_,
                                 dump_stats_,
                                 dump_passes_,
                                 dump_cfg_file_name_,
                                 compiler_phases_timings_.get(),
                                 swap_fd_,
                                 profile_file_);

    driver_->CompileAll(class_loader, dex_files_, timings_);
  }

CompilerDriver的构造函数

核心逻辑还是compiler_的初始化。
看到构造需要这么多参数,我们需要对于dex2oat的命令行参数进行一个复习了,我们在前面的《细说dex2oat(1)》中曾经有过对于所有参数的介绍。

CompilerDriver::CompilerDriver(const CompilerOptions* compiler_options,
                               VerificationResults* verification_results,
                               DexFileToMethodInlinerMap* method_inliner_map,
                               Compiler::Kind compiler_kind,
                               InstructionSet instruction_set,
                               const InstructionSetFeatures* instruction_set_features,
                               bool image, std::unordered_set<std::string>* image_classes,
                               std::unordered_set<std::string>* compiled_classes,
                               std::unordered_set<std::string>* compiled_methods,
                               size_t thread_count, bool dump_stats, bool dump_passes,
                               const std::string& dump_cfg_file_name, CumulativeLogger* timer,
                               int swap_fd, const std::string& profile_file)
    : swap_space_(swap_fd == -1 ? nullptr : new SwapSpace(swap_fd, 10 * MB)),
      swap_space_allocator_(new SwapAllocator<void>(swap_space_.get())),
      profile_present_(false), compiler_options_(compiler_options),
      verification_results_(verification_results),
      method_inliner_map_(method_inliner_map),
      compiler_(Compiler::Create(this, compiler_kind)),
      compiler_kind_(compiler_kind),
      instruction_set_(instruction_set),
      instruction_set_features_(instruction_set_features),
      freezing_constructor_lock_("freezing constructor lock"),
      compiled_classes_lock_("compiled classes lock"),
      compiled_methods_lock_("compiled method lock"),
      compiled_methods_(MethodTable::key_compare()),
      non_relative_linker_patch_count_(0u),
      image_(image),
      image_classes_(image_classes),
      classes_to_compile_(compiled_classes),
      methods_to_compile_(compiled_methods),
      had_hard_verifier_failure_(false),
      thread_count_(thread_count),
      stats_(new AOTCompilationStats),
      dedupe_enabled_(true),
      dump_stats_(dump_stats),
      dump_passes_(dump_passes),
      dump_cfg_file_name_(dump_cfg_file_name),
      timings_logger_(timer),
      compiler_context_(nullptr),
      support_boot_image_fixup_(instruction_set != kMips && instruction_set != kMips64),
      dedupe_code_("dedupe code", *swap_space_allocator_),
      dedupe_src_mapping_table_("dedupe source mapping table", *swap_space_allocator_),
      dedupe_mapping_table_("dedupe mapping table", *swap_space_allocator_),
      dedupe_vmap_table_("dedupe vmap table", *swap_space_allocator_),
      dedupe_gc_map_("dedupe gc map", *swap_space_allocator_),
      dedupe_cfi_info_("dedupe cfi info", *swap_space_allocator_) {
  DCHECK(compiler_options_ != nullptr);
  DCHECK(verification_results_ != nullptr);
  DCHECK(method_inliner_map_ != nullptr);

  dex_to_dex_compiler_ = reinterpret_cast<DexToDexCompilerFn>(ArtCompileDEX);

  compiler_->Init();

  CHECK_EQ(image_, image_classes_.get() != nullptr);
...
}

CompilerDriver::CompileAll

首先,CompilerDriver展现了一个值得我们学习的好习惯,为编译线程构造了一个线程池。
在CompilerDriver进行编译的时候,分成了两个步骤:

  • PreCompile
  • Compile
void CompilerDriver::CompileAll(jobject class_loader,
                                const std::vector<const DexFile*>& dex_files,
                                TimingLogger* timings) {
  DCHECK(!Runtime::Current()->IsStarted());
  std::unique_ptr<ThreadPool> thread_pool(
      new ThreadPool("Compiler driver thread pool", thread_count_ - 1));
...
  PreCompile(class_loader, dex_files, thread_pool.get(), timings);
  Compile(class_loader, dex_files, thread_pool.get(), timings);
...
}

CompilerDriver::PreCompile

PreCompile的步骤主要就是两个:

  • 做校验
  • 做类的初始化

我们将前面判断是否要做校验的部分先略过,这个PreCompile的逻辑看起来就清晰得多。

void CompilerDriver::PreCompile(jobject class_loader, const std::vector<const DexFile*>& dex_files,
                                ThreadPool* thread_pool, TimingLogger* timings) {
...

  Verify(class_loader, dex_files, thread_pool, timings);
...
  if (had_hard_verifier_failure_ && GetCompilerOptions().AbortOnHardVerifierFailure()) {
    LOG(FATAL) << "Had a hard failure verifying all classes, and was asked to abort in such "
               << "situations. Please check the log.";
  }

  InitializeClasses(class_loader, dex_files, thread_pool, timings);
...
}

CompilerDriver::Compile

针对每一个dex,调用CompileDexFile去编译。

void CompilerDriver::Compile(jobject class_loader, const std::vector<const DexFile*>& dex_files,
                             ThreadPool* thread_pool, TimingLogger* timings) {
  for (size_t i = 0; i != dex_files.size(); ++i) {
    const DexFile* dex_file = dex_files[i];
    CHECK(dex_file != nullptr);
    CompileDexFile(class_loader, *dex_file, dex_files, thread_pool, timings);
  }
...
}

CompilerDriver::CompileDexFile

上面的Compile函数是将多个dex拆成每一个dex文件的料度,而CompileDexFile再将其拆成每个类的粒度,针对每个类再调用CompileClass来进行编译。

void CompilerDriver::CompileDexFile(jobject class_loader, const DexFile& dex_file,
                                    const std::vector<const DexFile*>& dex_files,
                                    ThreadPool* thread_pool, TimingLogger* timings) {
  TimingLogger::ScopedTiming t("Compile Dex File", timings);
  ParallelCompilationManager context(Runtime::Current()->GetClassLinker(), class_loader, this,
                                     &dex_file, dex_files, thread_pool);
  context.ForAll(0, dex_file.NumClassDefs(), CompilerDriver::CompileClass, thread_count_);
}

小结

最后,我们再次复习一下到目前为止学习的过程:

dex2oat-main

目录
相关文章
|
6月前
|
机器学习/深度学习 安全 Java
程序员必知:【转】Apk脱壳圣战之
程序员必知:【转】Apk脱壳圣战之
58 0
祝贺在龙芯平台上编译jogamp(gluegen/jogl)2.3.2通过,并运行成功
祝贺在龙芯平台上编译jogamp(gluegen/jogl)2.3.2通过,并运行成功
56 0
|
安全 Java Android开发
【Android 逆向】ART 脱壳 ( InMemoryDexClassLoader 脱壳 | 加固厂商在 ART 下使用的两种类加载器 | InMemoryDexClassLoader 源码 )
【Android 逆向】ART 脱壳 ( InMemoryDexClassLoader 脱壳 | 加固厂商在 ART 下使用的两种类加载器 | InMemoryDexClassLoader 源码 )
440 0
|
安全 Android开发
【Android 逆向】ART 脱壳 ( 修改 /art/runtime/dex_file.cc#OpenCommon 系统源码进行脱壳 )
【Android 逆向】ART 脱壳 ( 修改 /art/runtime/dex_file.cc#OpenCommon 系统源码进行脱壳 )
287 0
|
Android开发
【Android 逆向】ART 脱壳 ( dex2oat 脱壳 | /art/dex2oat/dex2oat.cc#Dex2oat 函数源码 )(二)
【Android 逆向】ART 脱壳 ( dex2oat 脱壳 | /art/dex2oat/dex2oat.cc#Dex2oat 函数源码 )(二)
329 0
|
Android开发
【Android 逆向】ART 脱壳 ( dex2oat 脱壳 | /art/dex2oat/dex2oat.cc#Dex2oat 函数源码 )(一)
【Android 逆向】ART 脱壳 ( dex2oat 脱壳 | /art/dex2oat/dex2oat.cc#Dex2oat 函数源码 )(一)
252 0
|
Android开发
【Android 逆向】ART 脱壳 ( DexClassLoader 脱壳 | oat_file_assistant.cc 中涉及的 oat 文件生成流程 )(二)
【Android 逆向】ART 脱壳 ( DexClassLoader 脱壳 | oat_file_assistant.cc 中涉及的 oat 文件生成流程 )(二)
325 0
|
XML Java 开发工具
【朝花夕拾】Android性能篇之(四)Apk打包
随着IDE功能的不断加强,APK的打包几乎被一手包办,使得很多Android程序员并不了解其过程。而深入了解APK的打包流程,有助于更好地理解APK的结构及Android机制,也能很好地感受到Anroid虚拟机在优化道路上孜孜不倦的追求。
2002 0