优化技巧:提前if判断帮助CPU分支预测

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
性能测试 PTS,5000VUM额度
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: 在stackoverflow上有一个非常有名的问题:为什么处理有序数组要比非有序数组快?,可见分支预测对代码运行效率有非常大的影响。要提高代码执行效率,一个重要的原则就是尽量避免CPU把流水线清空,那么提高分支预测的成功率就非常重要。

分支预测

在stackoverflow上有一个非常有名的问题:为什么处理有序数组要比非有序数组快?,可见分支预测对代码运行效率有非常大的影响。

现代CPU都支持分支预测(branch prediction)和指令流水线(instruction pipeline),这两个结合可以极大提高CPU效率。对于像简单的if跳转,CPU是可以比较好地做分支预测的。但是对于switch跳转,CPU则没有太多的办法。switch本质上是据索引,从地址数组里取地址再跳转。

要提高代码执行效率,一个重要的原则就是尽量避免CPU把流水线清空,那么提高分支预测的成功率就非常重要。

那么对于代码里,如果某个switch分支概率很高,是否可以考虑代码层面帮CPU把判断提前,来提高代码执行效率呢?

Dubbo里ChannelEventRunnable的switch判断

ChannelEventRunnable里有一个switch来判断channel state,然后做对应的逻辑:查看

一个channel建立起来之后,超过99.9%情况它的state都是ChannelState.RECEIVED,那么可以考虑把这个判断提前。

benchmark验证

下面通过jmh来验证下:

public class TestBenchMarks {
    public enum ChannelState {
        CONNECTED, DISCONNECTED, SENT, RECEIVED, CAUGHT
    }

    @State(Scope.Benchmark)
    public static class ExecutionPlan {
        @Param({ "1000000" })
        public int size;
        public ChannelState[] states = null;

        @Setup
        public void setUp() {
            ChannelState[] values = ChannelState.values();
            states = new ChannelState[size];
            Random random = new Random(new Date().getTime());
            for (int i = 0; i < size; i++) {
                int nextInt = random.nextInt(1000000);
                if (nextInt > 100) {
                    states[i] = ChannelState.RECEIVED;
                } else {
                    states[i] = values[nextInt % values.length];
                }
            }
        }
    }

    @Fork(value = 5)
    @Benchmark
    @BenchmarkMode(Mode.Throughput)
    public void benchSiwtch(ExecutionPlan plan, Blackhole bh) {
        int result = 0;
        for (int i = 0; i < plan.size; ++i) {
            switch (plan.states[i]) {
            case CONNECTED:
                result += ChannelState.CONNECTED.ordinal();
                break;
            case DISCONNECTED:
                result += ChannelState.DISCONNECTED.ordinal();
                break;
            case SENT:
                result += ChannelState.SENT.ordinal();
                break;
            case RECEIVED:
                result += ChannelState.RECEIVED.ordinal();
                break;
            case CAUGHT:
                result += ChannelState.CAUGHT.ordinal();
                break;
            }
        }
        bh.consume(result);
    }

    @Fork(value = 5)
    @Benchmark
    @BenchmarkMode(Mode.Throughput)
    public void benchIfAndSwitch(ExecutionPlan plan, Blackhole bh) {
        int result = 0;
        for (int i = 0; i < plan.size; ++i) {
            ChannelState state = plan.states[i];
            if (state == ChannelState.RECEIVED) {
                result += ChannelState.RECEIVED.ordinal();
            } else {
                switch (state) {
                case CONNECTED:
                    result += ChannelState.CONNECTED.ordinal();
                    break;
                case SENT:
                    result += ChannelState.SENT.ordinal();
                    break;
                case DISCONNECTED:
                    result += ChannelState.DISCONNECTED.ordinal();
                    break;
                case CAUGHT:
                    result += ChannelState.CAUGHT.ordinal();
                    break;
                }
            }
        }
        bh.consume(result);
    }
}
  • benchSiwtch里是纯switch判断
  • benchIfAndSwitch 里用一个if提前判断state是否ChannelState.RECEIVED

benchmark结果是:

Result "io.github.hengyunabc.jmh.TestBenchMarks.benchSiwtch":
  576.745 ±(99.9%) 6.806 ops/s [Average]
  (min, avg, max) = (490.348, 576.745, 618.360), stdev = 20.066
  CI (99.9%): [569.939, 583.550] 

# Run complete. Total time: 00:06:48

Benchmark                         (size)   Mode  Cnt     Score    Error  Units
TestBenchMarks.benchIfAndSwitch  1000000  thrpt  100  1535.867 ± 61.212  ops/s
TestBenchMarks.benchSiwtch       1000000  thrpt  100   576.745 ±  6.806  ops/s

可以看到提前if判断的确提高了代码效率,这种技巧可以放在性能要求严格的地方。
Benchmark代码:https://github.com/hengyunabc/jmh-demo

总结

  • switch对于CPU来说难以做分支预测
  • 某些switch条件如果概率比较高,可以考虑单独提前if判断,充分利用CPU的分支预测机制
相关文章
|
8月前
|
分布式计算 Java 数据库连接
回答粉丝疑问:Spark为什么调优需要降低过多小任务,降低单条记录的资源开销?
回答粉丝疑问:Spark为什么调优需要降低过多小任务,降低单条记录的资源开销?
71 1
|
8月前
|
并行计算 索引 Python
讨论如何优化 DataFrame 操作,减少内存占用和提高执行速度
【5月更文挑战第19天】优化 DataFrame 操作涉及选择合适的数据类型、避免复制、使用向量化、高效迭代和设置索引。通过这些策略,如使用 `np.int8` 节省内存,直接修改列数据,利用 `itertuples`,设置分类数据类型,以及分块和并行计算,可以显著减少内存占用和提高执行速度,从而更好地处理大规模数据。实践中需结合具体情况综合运用,不断测试和优化。
251 2
|
缓存 算法 Cloud Native
面试技巧:如何在有限时间内优化代码性能
面试技巧:如何在有限时间内优化代码性能
80 0
|
Serverless
函数计算减少冷启动对性能的影响
函数计算减少冷启动对性能的影响
384 1
|
Java
项目实战典型案例20——内存长期占用导致系统慢
项目实战典型案例20——内存长期占用导致系统慢
98 0
|
缓存 监控 算法
案例15-创建大量对象导致cpu飙升
创建大量对象导致cpu飙升
237 0
【项目实战典型案例】20.内存长期占用导致系统慢
【项目实战典型案例】20.内存长期占用导致系统慢
|
缓存 监控 数据库连接
CPU飙高排查方案与思路
当CPU飙高时,可能是由于程序中存在一些性能问题或者死循环导致的。以下是一些排查CPU飙高的方案和思路
913 0
|
存储 监控 算法
复杂度分析:如何分析、统计算法的执行效率和资源消耗
复杂度分析:如何分析、统计算法的执行效率和资源消耗
|
前端开发 JavaScript Java
移动端性能优化:减少应用的加载时间和内存占用
移动应用的性能对用户体验至关重要。在移动设备上,加载时间和内存占用是两个主要的性能指标。本文将介绍一些有效的技术和策略,帮助开发人员优化移动应用的加载时间并减少内存占用,以提升应用的性能和响应速度。
335 0

相关实验场景

更多