Java高级之内存模型分析

简介: 博客出自:http://blog.csdn.net/liuxian13183,转载注明出处! All Rights Reserved !下文是博主感悟,请带着怀疑性的态度阅读!需要了解基本变量所占内存大小,请移步:读书笔记-类结构的认识Java存储空间有这么几块-来源于Java编程思想寄存器:位于处理器内部,不受外层代码控制,由处理器自行分配-C/C++可以建议分配方式,使用句柄(包含引用类型和引用地址)来操作数据。


博客出自:http://blog.csdn.net/liuxian13183,转载注明出处! All Rights Reserved !

下文是博主感悟,请带着怀疑性的态度阅读!

需要了解基本变量所占内存大小,请移步:读书笔记-类结构的认识

Java存储空间有这么几块-来源于Java编程思想

寄存器:位于处理器内部,不受外层代码控制,由处理器自行分配-C/C++可以建议分配方式,使用句柄(包含引用类型和引用地址)来操作数据。

堆栈:位于RAM中  引用基本数据类型存放的区块。 指针向下生成新对象,向上释放对象(new关键字),相当于链表结构。

堆:位于RAM中 对象存放的区块

常量存储:位于ROM中 存放于方法体中

非RAM存储:流对象和持久化数据-存储到硬盘

说到存储就难免讲到JVM的垃圾回收机制需要了解的同学可以点进去看看


如果要实现处理器的高效率,那么就要压榨它的每一寸(byte)的运行能力,I3的处理器达到3.4GHz,即每秒运算3.4亿次,因此给它划分任务块,每块分配足够多的任务,实现高并发;所以对内存的模型需要详细了解。


由于硬件的读写速度与处理器的运算速度差距过大,一般都会写一层高速缓存来作为缓冲,一边从硬盘读数据到缓存,一边把处理器的处理结果写入缓存,一边把缓存中要写入的数据写到硬盘;因此很多程序会使用到中间件。


如果多个处理器同时处理缓存,就需要拟定协议谁先谁后,对于同一个处理器中的任务也是同样如此,有sychronzied关键字来处理;同时处理器还会对一段程序丧心病狂的进行(OOOE)乱序处理,也就是顺序在前面的代码并不一定先执行,对于依赖前段程序结果的代码来说,就需要通过其他途径来保证顺序性。

sychronized关键字的原子性在于,顺序执行到这一句时,当前线程被挂起,执行完毕再唤醒。

有时见到一种单例的写法

if(instance==null){

sychronized(Instance.class){

if(instance==null){

instance=new Instance();

}

return instance;

 }

}

return instance;

这种的好处在于外层实现高性能并发,内层加if判断防止多个初始化同时进行(即第一个初始化完成,处理状态的其他线程再进去初始化一次)。

内存模型定义的关键在于第一使各处理器的操作不具有歧义 第二不影响拓展各自的特性;它主要定义虚拟机存取数据的细节,定义所有变量都存储在主内存,每条线程都有自己的工作内存(主内存的副本,或者叫引用),不同线程的工作内存互不直接访问,通过主内存来影响各自对值的引用;拿虚拟机来做例子,寄存器、栈、堆缓存就像工作内存,硬件设备就是主内存。

定义了八种操作来完成上述存取过程

lock和unlock 作用于主内存,标识为某线程独占或释放,成对存在

read和load 读取和加载,从主内存将数据读给工作内存,再加载到工作内存,成对存在

use和assign 使用和赋值 作用于工作内存,将变量给工作引擎,将接收到的值进行处理 成对存在

store和write 存储和写入 从工作内存将数据存回主内存,再写入主内存 成对存在

顺序过程unlock放到write后面即可。不允许读不入工作内存,也不允许写不入主内存;新变量只能在主内存中产生,不能跳级执行,lock与unlock一样重复执行多次,只是每次lock工作内存则被清空。lock可类比为Java的Lock对象。

 讲完上面的存取过程,变量的原子性就很好讲了,原子性指对变量的存取过程顺序执行,要么执行完,要么不执行,不允许其他线程对其进行污染。而带有特殊含义的sychronzied和final关键字,就可以用原子性来解释:前者由于保障了unlock之前变量已同步到主内存,这里的变量指方法体或类中所有的;后者是避免构造器把this引用传递出去,因而像惰性气体一样稳定。

另外java的先行发生原则,很有意思,有以下几种表现形式

1、程序控制流顺序执行,即代码顺序执行

2、volitale和锁顺序执行,即前一个锁执行结束,后一个得到锁

3、Thread的start方法先于run方法内的方法执行

4、通过isAlive、interrupt和join方法判断线程是否存活

5、对象结束先于finilize方法执行

6、A先于B,B先于C,可得出A先于C执行的传递性。

最后再讲下volatile关键字,它有两个作用 

1、保证改变后马上通知其他线程(执行write操作后,变量马上刷新),即对其他线程的可见性

2、保障上面所指丧心病狂的处理器处理此变量不被乱序操作,即禁止指令重排优化

但是volatile没有原子性(PS:原子性指read-assign-store这3组,只要一个执行,就会全部执行),不能保证作为计数器而正确存在;所以一般如果很少对它标识的变量进行改变的场景比较适用,比如多条线程共同执行多个有父类的任务,一个条件通知结束,则所有线程一起结束;就像劳动节来临,不论工程师还是设计师,都可以休息一天。

补充一点,64位的long和double无原子性,会被当成两个32位变量来处理,但一般默认为具有原子性,占用两个局部变量的位置

虚拟机运行时的数据区域有以下几种

虚拟机栈 主要存放引用和基本数据类型

堆 主要存放对象

方法区 常见的类信息除对象以外的所有,包括类信息(数据类型),常量池,方法、接口、静态变量等

本地方法栈 用来执行native方法

程序计数器 存储下一条需要执行的字节码指令,每条线程都有一个

虚拟机的多线程是通过线程切换并分配执行时间,同时一个内核在任一时刻只处理一条线程的指令 

虚拟机栈和堆是线程共享的数据区,方法区、本地方法栈和程序计数器是线程所不能访问到的数据区

其中数据访问的方式有两种:一种是句柄形式,引用指向句柄,句柄包含对象地址和对象类型;一种是指针,直接存储对象地址,以句柄少一步,所以访问也会快一些,而HotSpot就是用这种;前者也有一定优化,值发生改变时,引用不用变,后者要改变指针才行。

内存异常有两种表现,一种叫OutOfMemoryError(内存溢出),请求的虚拟机扩展栈已无足够空间,分配给新对象,典型的标记-清理算法容易产品这种情况,另一种叫StackOverFlow,指请求深度超过限制。还有一种常见的Memory Leak(内存泄露),指已经申请的内存无法被回收。

接下来对中英文分别占多少字节进行解释

public static void main(String[] args) {
String[] charsetNames = { "utf-8", "utf-16", "UTF-16BE", "UTF-16LE", "UTF-32", "UTF-32BE", "UTF-32LE", "unicode", "GBK", "GB2312", "GB18030",
"ISO8859-1", "BIG5", "ASCII" };


for (int i = 0; i < charsetNames.length; i++) {
printByteLength(charsetNames[i]);
}
}

/**
public static void printByteLength(String charsetName) {
* String类的不带参数的getBytes()方法会以程序所运行平台的默认编码方式为准来进行转换,
* 在不同环境下可能会有不同的结果,因此建议使用指定编码方式的getBytes(String charsetName)方法。
*/
String a = "a"; // 一个英文字符
String b = "啊"; // 一个中文字符
try {
System.out.println();
System.out.println(charsetName + "编码英文字符所占字节数:" + a.getBytes(charsetName).length);
System.out.println(charsetName + "编码中文字符所占字节数:" + b.getBytes(charsetName).length);
} catch (UnsupportedEncodingException e) {
System.out.println("非法编码格式!");
}
}


utf-8编码英文字符所占字节数:1
utf-8编码中文字符所占字节数:3

utf-16编码英文字符所占字节数:4
utf-16编码中文字符所占字节数:4

UTF-16BE编码英文字符所占字节数:2
UTF-16BE编码中文字符所占字节数:2

UTF-16LE编码英文字符所占字节数:2
UTF-16LE编码中文字符所占字节数:2

UTF-32编码英文字符所占字节数:4
UTF-32编码中文字符所占字节数:4

UTF-32BE编码英文字符所占字节数:4
UTF-32BE编码中文字符所占字节数:4

UTF-32LE编码英文字符所占字节数:4
UTF-32LE编码中文字符所占字节数:4

unicode编码英文字符所占字节数:4
unicode编码中文字符所占字节数:4

GBK编码英文字符所占字节数:1
GBK编码中文字符所占字节数:2

GB2312编码英文字符所占字节数:1
GB2312编码中文字符所占字节数:2

GB18030编码英文字符所占字节数:1
GB18030编码中文字符所占字节数:2

ISO8859-1编码英文字符所占字节数:1
ISO8859-1编码中文字符所占字节数:1

BIG5编码英文字符所占字节数:1
BIG5编码中文字符所占字节数:2

ASCII编码英文字符所占字节数:1
ASCII编码中文字符所占字节数:1


Linux默认可以存放100个进程,放1个跟99个是一样的,其他均为sleep状态,意思是已经开辟这么大内存,用还是不用,反正都在那里放着,不会浪费CPU时间,因此后台进程只要不是说一直处于活动状态,跟IOS一样,无需杀死后台进程。

String str1 = "hello";
String str2 = "hello";
System.out.println(str1 == str2); // 对象是否是同一个
System.out.println(str1.equals(str2)); // 字符串的话是可以直接相等,跟int等其他数据类型一样


String strObj1 = new String("hello");
String strObj2 = new String("hello");
System.out.println(strObj1 == strObj2);// 是否是同一个对象
System.out.println(strObj1.equals(strObj2));// 对象相等,因为char全相等


执行结果:

true
true
false
true

分析:拿String作为例子,其他容器类同样类似

    public boolean equals(Object anObject) {
        if (this == anObject) {
            return true;
        }
        if (anObject instanceof String) {
            String anotherString = (String)anObject;
            int n = value.length;
            if (n == anotherString.value.length) {
                char v1[] = value;
                char v2[] = anotherString.value;
                int i = 0;
                while (n-- != 0) {
                    if (v1[i] != v2[i])
                        return false;
                    i++;
                }
                return true;
            }
        }
        return false;
    }

首先判断是否是同一个对象,即两个引用指向同一个对象,那自然相等;

==判断两者是否是同一个对象,equals判断值是否相等。

其次比较是否是同一种类型,如不等则返回false,如相等则继续;

最后比较内部的值,String的char,List的value,Map的key和value,如果完全相等则相等。



目录
相关文章
|
2月前
|
存储 缓存 安全
Java内存模型深度解析:从理论到实践####
【10月更文挑战第21天】 本文深入探讨了Java内存模型(JMM)的核心概念与底层机制,通过剖析其设计原理、内存可见性问题及其解决方案,结合具体代码示例,帮助读者构建对JMM的全面理解。不同于传统的摘要概述,我们将直接以故事化手法引入,让读者在轻松的情境中领略JMM的精髓。 ####
47 6
|
1月前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
36 0
|
2月前
|
存储 算法 Java
Java内存管理深度剖析与优化策略####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,重点分析了堆内存的分配策略、垃圾回收算法以及如何通过调优提升应用性能。通过案例驱动的方式,揭示了常见内存泄漏的根源与解决策略,旨在为开发者提供实用的内存管理技巧,确保应用程序既高效又稳定地运行。 ####
|
21天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
29 6
|
1月前
|
存储 监控 算法
Java内存管理深度剖析:从垃圾收集到内存泄漏的全面指南####
本文深入探讨了Java虚拟机(JVM)中的内存管理机制,特别是垃圾收集(GC)的工作原理及其调优策略。不同于传统的摘要概述,本文将通过实际案例分析,揭示内存泄漏的根源与预防措施,为开发者提供实战中的优化建议,旨在帮助读者构建高效、稳定的Java应用。 ####
44 8
|
1月前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
1月前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
64 5
|
2月前
|
监控 算法 Java
jvm-48-java 变更导致压测应用性能下降,如何分析定位原因?
【11月更文挑战第17天】当JVM相关变更导致压测应用性能下降时,可通过检查变更内容(如JVM参数、Java版本、代码变更)、收集性能监控数据(使用JVM监控工具、应用性能监控工具、系统资源监控)、分析垃圾回收情况(GC日志分析、内存泄漏检查)、分析线程和锁(线程状态分析、锁竞争分析)及分析代码执行路径(使用代码性能分析工具、代码审查)等步骤来定位和解决问题。
|
1月前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
1月前
|
安全 Java 程序员
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。