为预测用户出行需求,ofo开始使用AI实现智能调度

简介:

ofo官方称在其人工智能系统中,应用了一款能够预测用户出行需求的AI,以便用户更好的出行体验。

为预测用户出行需求,ofo开始使用AI实现智能调度

共享单车几乎已经遍布了国内的主要城市,在众多共享单车中,属于佼佼者地位的ofo今天称在其人工智能系统中,应用了与“阿尔法狗”相同的算法模式,来预测用户的出行需求。

ofo称在其人工智能系统中,应用了与“阿尔法狗”相同算法模式的卷积神经网络来预测用户出行需求,实现智能调度。

AlphaGo的出现,让更多的人体会到人工智能技术为世界带来的改变,而AlphaGo的基础算法正是卷积神经网络。卷积是提取相关性特征的方法,神经网络是预测需求的模型结构,其主要应用于图像识别领域。ofo统计小黄车已为全球120座城市上亿用户提供了超10亿次出行服务,拥有共享单车行业最庞大的出行数据。

随着出行数据增多,ofo对用户出行需求的预测都会越来越精准。与此同时,ofo还运用谷歌的TensorFlow人工智能系统,使预测结果更精确。这是共享单车行业首次将人工智能图像处理技术应用于智能运营中。ofo将智能锁返回的定位信息形成热力图,并记录热力图的关键帧图像变化,利用卷积神经网络将图像抽象为网格像素,并对像素内的颜色变化进行相关性特征提取,从而能够分类出不同用户对于出行的不同需求。

为预测用户出行需求,ofo开始使用AI实现智能调度

简单来说,我们可以将卷积的过程想象成有人拿着玻璃镜片,扫过如上所示网格图像的过程,可以当镜片大小是3*3网格时,可提取上地与西二旗地区骑行需求相关性特征。当镜片大小扩大到17*17网格时,上地、西二旗与国贸之间骑行需求相关性的特征就被提取了。随着卷积镜片范围的扩大,所需的算法和计算能力会越来越复杂。目前,ofo的卷积神经网络层次可达30层。

将卷积神经网络和谷歌TensorFlow人工智能系统应用于共享单车是行业的创新。ofo表示正在全力打造以人工智能为基础,以物联网为载体的生态闭环,并加快在行业领先的进程。


原文发布时间: 2017-06-23 16:00
本文作者: 星星
本文来自云栖社区合作伙伴镁客网,了解相关信息可以关注镁客网。
相关文章
|
24天前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
2天前
|
人工智能 自然语言处理 算法
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
115 63
|
20天前
|
存储 XML 人工智能
深度解读AI在数字档案馆中的创新应用:高效识别与智能档案管理
基于OCR技术的纸质档案电子化方案,通过先进的AI能力平台,实现手写、打印、复古文档等多格式高效识别与智能归档。该方案大幅提升了档案管理效率,确保数据安全与隐私,为档案馆提供全面、智能化的电子化管理解决方案。
132 48
|
22天前
|
人工智能 数据挖掘 数据库
拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策
本文为数据库「拥抱Data+AI」系列连载第1篇,该系列是阿里云瑶池数据库面向各行业Data+AI应用场景,基于真实客户案例&最佳实践,展示Data+AI行业解决方案的连载文章。本篇内容针对电商行业痛点,将深入探讨如何利用数据与AI技术以及数据分析方法论,为电商行业注入新的活力与效能。
拥抱Data+AI|破解电商7大挑战,DMS+AnalyticDB助力企业智能决策
|
23天前
|
人工智能 数据库 决策智能
拥抱Data+AI|如何破解电商7大挑战?DMS+AnalyticDB助力企业智能决策
本文为阿里云瑶池数据库「拥抱Data+AI」系列连载第1篇,聚焦电商行业痛点,探讨如何利用数据与AI技术及分析方法论,为电商注入新活力与效能。文中详细介绍了阿里云Data+AI解决方案,涵盖Zero-ETL、实时在线分析、混合负载资源隔离、长周期数据归档等关键技术,帮助企业应对数据在线重刷、实时分析、成本优化等挑战,实现智能化转型。
拥抱Data+AI|如何破解电商7大挑战?DMS+AnalyticDB助力企业智能决策
|
13天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
13天前
|
机器学习/深度学习 人工智能 安全
AI与旅游业:旅行规划的智能助手
在数字化浪潮中,人工智能(AI)正重塑旅游业。本文探讨了AI如何通过个性化推荐、智能预测与预警、语音交互与虚拟助手、增强现实体验及可持续发展,提升旅行规划的效率、安全性和趣味性,推动旅游业创新与变革。
|
15天前
|
人工智能 自然语言处理 关系型数据库
从数据到智能,一站式带你了解 Data+AI 精选解决方案、特惠权益
从 Data+AI 精选解决方案、特惠权益等,一站式带你了解阿里云瑶池数据库经典的AI产品服务与实践。
|
16天前
|
人工智能 安全 搜索推荐
AI与能源管理:智能电网的未来
本文探讨了AI与智能电网的融合及其对能源管理的深远影响。智能电网利用先进的信息、通信和AI技术,实现电力的自主、智能化、高效管理。AI在精准预测电力需求、实时监测与故障诊断、智能能源调度、个性化能源服务和优化可再生能源利用等方面发挥关键作用,推动能源管理的高效、智能和可持续发展。
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
AI与法律行业:智能法律咨询
在科技飞速发展的今天,人工智能(AI)正逐渐渗透到法律行业,特别是在智能法律咨询领域。本文探讨了AI在智能法律咨询中的应用现状、优势及挑战,并展望了其未来发展前景。AI技术通过大数据、自然语言处理等手段,提供高效、便捷、低成本且个性化的法律服务,但同时也面临数据隐私、法律伦理等问题。未来,AI将在技术升级、政策推动和融合创新中,为用户提供更加优质、便捷的法律服务。

热门文章

最新文章

下一篇
无影云桌面