理解Java线程池ThreadPoolExecutor

简介: 介绍一下Java线程池ThreadPoolExecutor

在Java的线程池的使用会有比较多的地方,有比较多的应用场景,介绍一下Java线程池ThreadPoolExecutor。

线程是一个操作系统概念。操作系统负责这个线程的创建、挂起、运行、阻塞和终结操作。而操作系统创建线程、切换线程状态、终结线程都要进行CPU调度----这是一个耗费时间和系统资源的事情。

大多数实际场景中是这样的:处理某一次请求的时间是非常短暂的,但是请求数量是巨大的。这种背景下,如果我们为每一个请求都单独创建一个线程,那么物理机的所有资源基本上都被操作系统创建线程、切换线程状态、销毁线程这些操作所占用,用于业务请求处理的资源反而减少了。所以最理想的处理方式是,将处理请求的线程数量控制在一个范围,既保证后续的请求不会等待太长时间,又保证物理机将足够的资源用于请求处理本身。

1.ThreadPoolExecutor类

二话不多说,来看一下ThreadPoolExecutor类的具体实现源码。

继承抽象类AbstractExecutorService,它实现了ExecutorService 接口

public class ThreadPoolExecutor extends AbstractExecutorService{····}
public abstract class AbstractExecutorService implements ExecutorService {····}
public interface ExecutorService extends Executor {····}
public interface Executor {····}

ThreadPoolExecutor类中提供了四个构造方法:

    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), defaultHandler);
    }
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             threadFactory, defaultHandler);
    }
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              RejectedExecutionHandler handler) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), handler);
    }
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.acc = System.getSecurityManager() == null ?
                null :
                AccessController.getContext();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

构造函数中需要传入的参数包括corePoolSize、maximumPoolSize、keepAliveTime、timeUnit、workQueue、threadFactory和handler。

corePoolSize:线程池主要用于执行任务的是核心线程数量。默认情况下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中。


非核心线程:设置的大于corePoolSize参数小于maximumPoolSize参数的部分,就是线程池可以临时创建的“非核心线程”的最大数量。这种情况下如果某个线程没有运行任何任务,在等待keepAliveTime时间后,这个线程将会被销毁,直到线程池的线程数量重新达到corePoolSize。


maximumPoolSize:当前线程池允许创建的最大线程数量。那么如果设置的corePoolSize参数和设置的maximumPoolSize参数一致时,线程池在任何情况下都不会回收空闲线程。keepAliveTime和timeUnit也就失去了意义。


keepAliveTime:线程没有任务执行时最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0。


timeUnit:参数keepAliveTime的时间单位。


workQueue:一个阻塞队列,用来存储等待执行的任务。一般来说,这里的阻塞队列有以下几种选择:ArrayBlockingQueue,LinkedBlockingQueue,SynchronousQueue。


threadFactory:线程工厂,主要用来创建线程。


handler:表示当拒绝处理任务时的策略。有以下四种取值:

ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常

ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常

ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)

ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务

2.线程池实现原理

(1)任务的执行

先来看一下ThreadPoolExecutor类中其他的一些比较重要成员变量:

private final BlockingQueue<Runnable> workQueue; //任务缓存队列,用来存放等待执行的任务
private final ReentrantLock mainLock = new ReentrantLock(); //线程池的主要状态锁,对线程池状态(比如线程池大小,runState等)的改变都要使用这个锁
private final HashSet<Worker> workers = new HashSet<Worker>(); //用来存放工作集
private volatile long  keepAliveTime; //线程存活时间   
private volatile boolean allowCoreThreadTimeOut; //是否允许为核心线程设置存活时间
private volatile int   corePoolSize;  //核心池的大小(即线程池中的线程数目大于这个参数时,提交的任务会被放进任务缓存队列)
private volatile int   maximumPoolSize;  //线程池最大能容忍的线程数
private volatile int   poolSize; //线程池中当前的线程数
private volatile RejectedExecutionHandler handler; //任务拒绝策略
private volatile ThreadFactory threadFactory; //线程工厂,用来创建线程
private int largestPoolSize; //用来记录线程池中曾经出现过的最大线程数
private long completedTaskCount; //用来记录已经执行完毕的任务个数

在ThreadPoolExecutor类中,最核心的任务提交方法是execute()方法,虽然通过submit也可以提交任务,但是实际上submit方法里面最终调用的还是execute()方法,所以我们只需要研究execute()方法的实现原理即可:

    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }

·····························································································

<未完待续>



相关文章
|
22天前
|
Java 调度
Java并发编程:深入理解线程池的原理与实践
【4月更文挑战第6天】本文将深入探讨Java并发编程中的重要概念——线程池。我们将从线程池的基本原理入手,逐步解析其工作过程,以及如何在实际开发中合理使用线程池以提高程序性能。同时,我们还将关注线程池的一些高级特性,如自定义线程工厂、拒绝策略等,以帮助读者更好地掌握线程池的使用技巧。
|
30天前
|
Java 程序员
java线程池讲解面试
java线程池讲解面试
53 1
|
24天前
|
Java
深入理解Java并发编程:线程池的应用与优化
【4月更文挑战第3天】 在Java并发编程中,线程池是一种重要的资源管理工具,它能有效地控制和管理线程的数量,提高系统性能。本文将深入探讨Java线程池的工作原理、应用场景以及优化策略,帮助读者更好地理解和应用线程池。
|
20天前
|
Java
Java 并发编程:深入理解线程池
【4月更文挑战第8天】本文将深入探讨 Java 中的线程池技术,包括其工作原理、优势以及如何使用。线程池是 Java 并发编程的重要工具,它可以有效地管理和控制线程的执行,提高系统性能。通过本文的学习,读者将对线程池有更深入的理解,并能在实际开发中灵活运用。
|
20天前
|
Java
Java并发编程:深入理解线程池
【4月更文挑战第7天】在现代软件开发中,多线程编程已经成为一种不可或缺的技术。为了提高程序性能和资源利用率,Java提供了线程池这一强大工具。本文将深入探讨Java线程池的原理、使用方法以及如何根据实际需求定制线程池,帮助读者更好地理解和应用线程池技术。
|
1天前
|
存储 监控 Java
|
2天前
|
缓存 Java
Java并发编程:深入理解线程池
【4月更文挑战第26天】在Java中,线程池是一种重要的并发工具,它可以有效地管理和控制线程的执行。本文将深入探讨线程池的工作原理,以及如何使用Java的Executor框架来创建和管理线程池。我们将看到线程池如何提高性能,减少资源消耗,并提供更好的线程管理。
|
5天前
|
Java
Java中的并发编程:理解和应用线程池
【4月更文挑战第23天】在现代的Java应用程序中,性能和资源的有效利用已经成为了一个重要的考量因素。并发编程是提高应用程序性能的关键手段之一,而线程池则是实现高效并发的重要工具。本文将深入探讨Java中的线程池,包括其基本原理、优势、以及如何在实际开发中有效地使用线程池。我们将通过实例和代码片段,帮助读者理解线程池的概念,并学习如何在Java应用中合理地使用线程池。
|
11天前
|
缓存 分布式计算 监控
Java并发编程:深入理解线程池
【4月更文挑战第17天】在Java并发编程中,线程池是一种非常重要的技术,它可以有效地管理和控制线程的执行,提高系统的性能和稳定性。本文将深入探讨Java线程池的工作原理,使用方法以及在实际开发中的应用场景,帮助读者更好地理解和使用Java线程池。
|
11天前
|
存储 缓存 监控
Java线程池
Java线程池
49 1