hadoop中slot简介(map slot 和 reduce slot)

简介: Slots是Hadoop的一个重要概念。然而在Hadoop相关论文,slots的阐述难以理解。网上关于slots的概念介绍也很少,而对于一个有经验的Hadoop开发者来说,他们可能脑子里已经理解了slots的真正含义,但却难以清楚地表达出来,Hadoop初学者听了还是云里雾里。我来尝试讲解一下,以期抛砖引玉。首先,slot不是CPU的Core,也不是memory chip,它是一个逻辑概念

Slots是Hadoop的一个重要概念。然而在Hadoop相关论文,slots的阐述难以理解。网上关于slots的概念介绍也很少,而对于一个有经验的Hadoop开发者来说,他们可能脑子里已经理解了slots的真正含义,但却难以清楚地表达出来,Hadoop初学者听了还是云里雾里。我来尝试讲解一下,以期抛砖引玉。


首先,slot不是CPU的Core,也不是memory chip,它是一个逻辑概念,一个节点的slot的数量用来表示某个节点的资源的容量或者说是能力的大小,因而slot是 Hadoop的资源单位。


Hadoop利用slots来管理分配节点的资源。每个Job申请资源以slots为单位,每个节点会确定自己的计算能力以及memory确自己包含的slots总量。当某个Job要开始执行时,先向JobTracker申请slots,JobTracker分配空闲的slots,Job再占用slots,Job束后,归还slots。每个TaskTracker定期(例如淘宝Hadoop心跳周期是5s)通过心跳(hearbeat)与Jobtracker通信,一方面汇报自己当前工作状态,JobTracker得够某个TaskTracker是否Alive;同时汇报自身空闲slots数量。JobTracker利用某个调度规则,如Hadoop默认调器FIFO或者Capacity Scheduler、FairScheduler等。(注:淘宝Hadoop使用云梯调度器YuntiScheuler,它是基于Fair Scheduler行修改的)。


Hadoop里有 两种slots, map slots和reduce slots,map task使用map slots,一一对应,reduce task使用reduce slots。注: 在越来越多的观点认为应该打破map slots与 reduce slots的界限,应该被视为统一的资源池,they are all resource,从而提高资的利用率。区分map slots和reduce slots,容易导致某一种资源紧张,而另一个资源却有空闲。在Hadoop的下一代框架MapR中,已经取消了map slots与reduce slots的概,并将Jobtracker的功能一分为二,用ResourceManager来管理节点资源,用ApplicationMaster来监控与调度作业。ApplicationMaster是每个Application都有一个单独的实例,application是用户提交的一组任务,它可以是一个或多个job的任务组成。


Hadoop中通常每个tasktracker会包含多个slots,Job的一个task均对应于tasktracker中的一个slot。系统中map slots总数与reducer slots总数的计算公式如下:

Map slots总数=集群节点数×mapred.tasktracker.map.tasks.maximum

Reducer slots总数=集群节点数×mapred.tasktracker.reduce.tasks.maximum


本文出自 “点滴积累” 博客,请务必保留此出处http://tianxingzhe.blog.51cto.com/3390077/1697269

目录
相关文章
|
7月前
|
JavaScript 前端开发
解释 JavaScript 中的`map()`、`filter()`和`reduce()`方法的用途。
解释 JavaScript 中的`map()`、`filter()`和`reduce()`方法的用途。
70 1
|
7月前
|
开发者 Python
Python中的函数式编程:理解map、filter和reduce
【2月更文挑战第13天】 本文深入探讨了Python中函数式编程的三个主要工具:map、filter和reduce。我们将详细解释这些函数的工作原理,并通过实例来展示它们如何使代码更简洁、更易读。我们还将讨论一些常见的误解和陷阱,以及如何避免它们。无论你是Python新手还是有经验的开发者,本文都将帮助你更好地理解和使用这些强大的函数。
|
3月前
|
索引
ES5常见的数组方法:forEach ,map ,filter ,some ,every ,reduce (除了forEach,其他都有回调,都有return)
ES5常见的数组方法:forEach ,map ,filter ,some ,every ,reduce (除了forEach,其他都有回调,都有return)
|
6月前
|
Python
高阶函数如`map`, `filter`, `reduce`和`functools.partial`在Python中用于函数操作
【6月更文挑战第20天】高阶函数如`map`, `filter`, `reduce`和`functools.partial`在Python中用于函数操作。装饰器如`@timer`接收或返回函数,用于扩展功能,如记录执行时间。`timer`装饰器通过包裹函数并计算执行间隙展示时间消耗,如`my_function(2)`执行耗时2秒。
36 3
|
2月前
|
SQL 分布式计算 关系型数据库
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
71 3
|
2月前
|
存储 分布式计算 Hadoop
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
57 2
|
2月前
|
分布式计算 Hadoop Unix
Hadoop-28 ZooKeeper集群 ZNode简介概念和测试 数据结构与监听机制 持久性节点 持久顺序节点 事务ID Watcher机制
Hadoop-28 ZooKeeper集群 ZNode简介概念和测试 数据结构与监听机制 持久性节点 持久顺序节点 事务ID Watcher机制
45 1
|
3月前
|
JavaScript 前端开发
js map和reduce
js map和reduce
|
2月前
|
存储 SQL 消息中间件
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
51 0
|
5月前
|
人工智能 算法 大数据
算法金 | 推导式、生成器、向量化、map、filter、reduce、itertools,再见 for 循环
这篇内容介绍了编程中避免使用 for 循环的一些方法,特别是针对 Python 语言。它强调了 for 循环在处理大数据或复杂逻辑时可能导致的性能、可读性和复杂度问题。
58 6
算法金 | 推导式、生成器、向量化、map、filter、reduce、itertools,再见 for 循环

相关实验场景

更多