Python数据处理库pandas入门教程

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库。本文是对它的一个入门教程。 pandas提供了快速,灵活和富有表现力的数据结构,目的是使“关系”或“标记”数据的工作既简单又直观。它旨在成为在Python中进行实际数据分析的高级构建块。 # 入门介绍 pandas适合于许多不同类型的数据,包括: *

pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库。本文是对它的一个入门教程。

pandas提供了快速,灵活和富有表现力的数据结构,目的是使“关系”或“标记”数据的工作既简单又直观。它旨在成为在Python中进行实际数据分析的高级构建块。

入门介绍

pandas适合于许多不同类型的数据,包括:

  • 具有异构类型列的表格数据,例如SQL表格或Excel数据
  • 有序和无序(不一定是固定频率)时间序列数据。
  • 具有行列标签的任意矩阵数据(均匀类型或不同类型)
  • 任何其他形式的观测/统计数据集。

由于这是一个Python语言的软件包,因此需要你的机器上首先需要具备Python语言的环境。关于这一点,请自行在网络上搜索获取方法。

关于如何获取pandas请参阅官网上的说明:pandas Installation

通常情况下,我们可以通过pip来执行安装:

sudo pip3 install pandas

或者通过conda 来安装pandas:

conda install pandas

目前(2018年2月)pandas的最新版本是v0.22.0(发布时间:2017年12月29日)。

我已经将本文的源码和测试数据放到Github上: pandas_tutorial ,读者可以前往获取。

另外,pandas常常和NumPy一起使用,本文中的源码中也会用到NumPy

建议读者先对NumPy有一定的熟悉再来学习pandas,我之前也写过一个NumPy的基础教程,参见这里:Python 机器学习库 NumPy 教程

核心数据结构

pandas最核心的就是SeriesDataFrame两个数据结构。

这两种类型的数据结构对比如下:

名称 维度 说明
Series 1维 带有标签的同构类型数组
DataFrame 2维 表格结构,带有标签,大小可变,且可以包含异构的数据列

DataFrame可以看做是Series的容器,即:一个DataFrame中可以包含若干个Series。

注:在0.20.0版本之前,还有一个三维的数据结构,名称为Panel。这也是pandas库取名的原因:pan(el)-da(ta)-s。但这种数据结构由于很少被使用到,因此已经被废弃了。

Series

由于Series是一维结构的数据,我们可以直接通过数组来创建这种数据,像这样:

# data_structure.py

import pandas as pd
import numpy as np

series1 = pd.Series([1, 2, 3, 4])
print("series1:\n{}\n".format(series1))

这段代码输出如下:

series1:
0    1
1    2
2    3
3    4
dtype: int64

这段输出说明如下:

  • 输出的最后一行是Series中数据的类型,这里的数据都是int64类型的。
  • 数据在第二列输出,第一列是数据的索引,在pandas中称之为Index

我们可以分别打印出Series中的数据和索引:

# data_structure.py

print("series1.values: {}\n".format(series1.values))

print("series1.index: {}\n".format(series1.index))

这两行代码输出如下:

series1.values: [1 2 3 4]

series1.index: RangeIndex(start=0, stop=4, step=1)

如果不指定(像上面这样),索引是[1, N-1]的形式。不过我们也可以在创建Series的时候指定索引。索引未必一定需要是整数,可以是任何类型的数据,例如字符串。例如我们以七个字母来映射七个音符。索引的目的是可以通过它来获取对应的数据,例如下面这样:

# data_structure.py

series2 = pd.Series([1, 2, 3, 4, 5, 6, 7],
    index=["C", "D", "E", "F", "G", "A", "B"])
print("series2:\n{}\n".format(series2))
print("E is {}\n".format(series2["E"]))

这段代码输出如下:

series2:
C    1
D    2
E    3
F    4
G    5
A    6
B    7
dtype: int64

E is 3

DataFrame

下面我们来看一下DataFrame的创建。我们可以通过NumPy的接口来创建一个4x4的矩阵,以此来创建一个DataFrame,像这样:

# data_structure.py

df1 = pd.DataFrame(np.arange(16).reshape(4,4))
print("df1:\n{}\n".format(df1))

这段代码输出如下:

df1:
    0   1   2   3
0   0   1   2   3
1   4   5   6   7
2   8   9  10  11
3  12  13  14  15

从这个输出我们可以看到,默认的索引和列名都是[0, N-1]的形式。

我们可以在创建DataFrame的时候指定列名和索引,像这样:

# data_structure.py

df2 = pd.DataFrame(np.arange(16).reshape(4,4),
    columns=["column1", "column2", "column3", "column4"],
    index=["a", "b", "c", "d"])
print("df2:\n{}\n".format(df2))

这段代码输出如下:

df2:
   column1  column2  column3  column4
a        0        1        2        3
b        4        5        6        7
c        8        9       10       11
d       12       13       14       15

我们也可以直接指定列数据来创建DataFrame:

# data_structure.py

df3 = pd.DataFrame({"note" : ["C", "D", "E", "F", "G", "A", "B"],
    "weekday": ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]})
print("df3:\n{}\n".format(df3))

这段代码输出如下:

df3:
  note weekday
0    C     Mon
1    D     Tue
2    E     Wed
3    F     Thu
4    G     Fri
5    A     Sat
6    B     Sun

请注意:

  • DataFrame的不同列可以是不同的数据类型
  • 如果以Series数组来创建DataFrame,每个Series将成为一行,而不是一列

例如:

# data_structure.py

noteSeries = pd.Series(["C", "D", "E", "F", "G", "A", "B"],
    index=[1, 2, 3, 4, 5, 6, 7])
weekdaySeries = pd.Series(["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"],
    index=[1, 2, 3, 4, 5, 6, 7])
df4 = pd.DataFrame([noteSeries, weekdaySeries])
print("df4:\n{}\n".format(df4))

df4的输出如下:

df4:
     1    2    3    4    5    6    7
0    C    D    E    F    G    A    B
1  Mon  Tue  Wed  Thu  Fri  Sat  Sun

我们可以通过下面的形式给DataFrame添加或者删除列数据:

# data_structure.py

df3["No."] = pd.Series([1, 2, 3, 4, 5, 6, 7])
print("df3:\n{}\n".format(df3))

del df3["weekday"]
print("df3:\n{}\n".format(df3))

这段代码输出如下:

df3:
  note weekday  No.
0    C     Mon    1
1    D     Tue    2
2    E     Wed    3
3    F     Thu    4
4    G     Fri    5
5    A     Sat    6
6    B     Sun    7

df3:
  note  No.
0    C    1
1    D    2
2    E    3
3    F    4
4    G    5
5    A    6
6    B    7

Index对象与数据访问

pandas的Index对象包含了描述轴的元数据信息。当创建Series或者DataFrame的时候,标签的数组或者序列会被转换成Index。可以通过下面的方式获取到DataFrame的列和行的Index对象:

# data_structure.py

print("df3.columns\n{}\n".format(df3.columns))
print("df3.index\n{}\n".format(df3.index))

这两行代码输出如下:

df3.columns
Index(['note', 'No.'], dtype='object')

df3.index
RangeIndex(start=0, stop=7, step=1)

请注意:

  • Index并非集合,因此其中可以包含重复的数据
  • Index对象的值是不可以改变,因此可以通过它安全的访问数据

DataFrame提供了下面两个操作符来访问其中的数据:

  • loc:通过行和列的索引来访问数据
  • iloc:通过行和列的下标来访问数据

例如这样:

# data_structure.py

print("Note C, D is:\n{}\n".format(df3.loc[[0, 1], "note"]))
print("Note C, D is:\n{}\n".format(df3.iloc[[0, 1], 0]))

第一行代码访问了行索引为0和1,列索引为“note”的元素。第二行代码访问了行下标为0和1(对于df3来说,行索引和行下标刚好是一样的,所以这里都是0和1,但它们却是不同的含义),列下标为0的元素。

这两行代码输出如下:

Note C, D is:
0    C
1    D
Name: note, dtype: object

Note C, D is:
0    C
1    D
Name: note, dtype: object

文件操作

pandas库提供了一系列的read_函数来读取各种格式的文件,它们如下所示:

  • read_csv
  • read_table
  • read_fwf
  • read_clipboard
  • read_excel
  • read_hdf
  • read_html
  • read_json
  • read_msgpack
  • read_pickle
  • read_sas
  • read_sql
  • read_stata
  • read_feather

读取Excel文件

注:要读取Excel文件,还需要安装另外一个库:xlrd

通过pip可以这样完成安装:

sudo pip3 install xlrd

安装完之后可以通过pip查看这个库的信息:

$  pip3 show xlrd
Name: xlrd
Version: 1.1.0
Summary: Library for developers to extract data from Microsoft Excel (tm) spreadsheet files
Home-page: http://www.python-excel.org/
Author: John Machin
Author-email: sjmachin@lexicon.net
License: BSD
Location: /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages
Requires: 

接下来我们看一个读取Excel的简单的例子:

# file_operation.py

import pandas as pd
import numpy as np

df1 = pd.read_excel("data/test.xlsx")
print("df1:\n{}\n".format(df1))

这个Excel的内容如下:

df1:
   C  Mon
0  D  Tue
1  E  Wed
2  F  Thu
3  G  Fri
4  A  Sat
5  B  Sun

注:本文的代码和数据文件可以通过文章开头提到的Github仓库获取。

读取CSV文件

下面,我们再来看读取CSV文件的例子。

第一个CSV文件内容如下:

$ cat test1.csv 
C,Mon
D,Tue
E,Wed
F,Thu
G,Fri
A,Sat

读取的方式也很简单:

# file_operation.py

df2 = pd.read_csv("data/test1.csv")
print("df2:\n{}\n".format(df2))

我们再来看第2个例子,这个文件的内容如下:

$ cat test2.csv 
C|Mon
D|Tue
E|Wed
F|Thu
G|Fri
A|Sat

严格的来说,这并不是一个CSV文件了,因为它的数据并不是通过逗号分隔的。在这种情况下,我们可以通过指定分隔符的方式来读取这个文件,像这样:

# file_operation.py

df3 = pd.read_csv("data/test2.csv", sep="|")
print("df3:\n{}\n".format(df3))

实际上,read_csv支持非常多的参数用来调整读取的参数,如下表所示:

参数 说明
path 文件路径
sep或者delimiter 字段分隔符
header 列名的行数,默认是0(第一行)
index_col 列号或名称用作结果中的行索引
names 结果的列名称列表
skiprows 从起始位置跳过的行数
na_values 代替NA的值序列
comment 以行结尾分隔注释的字符
parse_dates 尝试将数据解析为datetime。默认为False
keep_date_col 如果将列连接到解析日期,保留连接的列。默认为False
converters 列的转换器
dayfirst 当解析可以造成歧义的日期时,以内部形式存储。默认为False
data_parser 用来解析日期的函数
nrows 从文件开始读取的行数
iterator 返回一个TextParser对象,用于读取部分内容
chunksize 指定读取块的大小
skip_footer 文件末尾需要忽略的行数
verbose 输出各种解析输出的信息
encoding 文件编码
squeeze 如果解析的数据只包含一列,则返回一个Series
thousands 千数量的分隔符

详细的read_csv函数说明请参见这里:pandas.read_csv

处理无效值

现实世界并非完美,我们读取到的数据常常会带有一些无效值。如果没有处理好这些无效值,将对程序造成很大的干扰。

对待无效值,主要有两种处理方法:直接忽略这些无效值;或者将无效值替换成有效值。

下面我先创建一个包含无效值的数据结构。然后通过pandas.isna函数来确认哪些值是无效的:

# process_na.py

import pandas as pd
import numpy as np

df = pd.DataFrame([[1.0, np.nan, 3.0, 4.0],
                  [5.0, np.nan, np.nan, 8.0],
                  [9.0, np.nan, np.nan, 12.0],
                  [13.0, np.nan, 15.0, 16.0]])

print("df:\n{}\n".format(df));
print("df:\n{}\n".format(pd.isna(df)));****

这段代码输出如下:

df:
      0   1     2     3
0   1.0 NaN   3.0   4.0
1   5.0 NaN   NaN   8.0
2   9.0 NaN   NaN  12.0
3  13.0 NaN  15.0  16.0

df:
       0     1      2      3
0  False  True  False  False
1  False  True   True  False
2  False  True   True  False
3  False  True  False  False

忽略无效值

我们可以通过pandas.DataFrame.dropna函数抛弃无效值:

# process_na.py

print("df.dropna():\n{}\n".format(df.dropna()));

注:dropna默认不会改变原先的数据结构,而是返回了一个新的数据结构。如果想要直接更改数据本身,可以在调用这个函数的时候传递参数 inplace = True

对于原先的结构,当无效值全部被抛弃之后,将不再是一个有效的DataFrame,因此这行代码输出如下:

df.dropna():
Empty DataFrame
Columns: [0, 1, 2, 3]
Index: []

我们也可以选择抛弃整列都是无效值的那一列:

# process_na.py

print("df.dropna(axis=1, how='all'):\n{}\n".format(df.dropna(axis=1, how='all')));

注:axis=1表示列的轴。how可以取值'any'或者'all',默认是前者。

这行代码输出如下:

df.dropna(axis=1, how='all'):
      0     2     3
0   1.0   3.0   4.0
1   5.0   NaN   8.0
2   9.0   NaN  12.0
3  13.0  15.0  16.0

替换无效值

我们也可以通过fillna函数将无效值替换成为有效值。像这样:

# process_na.py

print("df.fillna(1):\n{}\n".format(df.fillna(1)));

这段代码输出如下:

df.fillna(1):
      0    1     2     3
0   1.0  1.0   3.0   4.0
1   5.0  1.0   1.0   8.0
2   9.0  1.0   1.0  12.0
3  13.0  1.0  15.0  16.0

将无效值全部替换成同样的数据可能意义不大,因此我们可以指定不同的数据来进行填充。为了便于操作,在填充之前,我们可以先通过rename方法修改行和列的名称:

# process_na.py

df.rename(index={0: 'index1', 1: 'index2', 2: 'index3', 3: 'index4'},
          columns={0: 'col1', 1: 'col2', 2: 'col3', 3: 'col4'},
          inplace=True);
df.fillna(value={'col2': 2}, inplace=True)
df.fillna(value={'col3': 7}, inplace=True)
print("df:\n{}\n".format(df));

这段代码输出如下:

df:
        col1  col2  col3  col4
index1   1.0   2.0   3.0   4.0
index2   5.0   2.0   7.0   8.0
index3   9.0   2.0   7.0  12.0
index4  13.0   2.0  15.0  16.0

处理字符串

数据中常常牵涉到字符串的处理,接下来我们就看看pandas对于字符串操作。

Seriesstr字段包含了一系列的函数用来处理字符串。并且,这些函数会自动处理无效值。

下面是一些实例,在第一组数据中,我们故意设置了一些包含空格字符串:

# process_string.py

import pandas as pd

s1 = pd.Series([' 1', '2 ', ' 3 ', '4', '5']);
print("s1.str.rstrip():\n{}\n".format(s1.str.lstrip()))
print("s1.str.strip():\n{}\n".format(s1.str.strip()))
print("s1.str.isdigit():\n{}\n".format(s1.str.isdigit()))

在这个实例中我们看到了对于字符串strip的处理以及判断字符串本身是否是数字,这段代码输出如下:

s1.str.rstrip():
0     1
1    2 
2    3 
3     4
4     5
dtype: object

s1.str.strip():
0    1
1    2
2    3
3    4
4    5
dtype: object

s1.str.isdigit():
0    False
1    False
2    False
3     True
4     True
dtype: bool

下面是另外一些示例,展示了对于字符串大写,小写以及字符串长度的处理:

# process_string.py

s2 = pd.Series(['Stairway to Heaven', 'Eruption', 'Freebird',
                    'Comfortably Numb', 'All Along the Watchtower'])
print("s2.str.lower():\n{}\n".format(s2.str.lower()))
print("s2.str.upper():\n{}\n".format(s2.str.upper()))
print("s2.str.len():\n{}\n".format(s2.str.len()))

该段代码输出如下:

s2.str.lower():
0          stairway to heaven
1                    eruption
2                    freebird
3            comfortably numb
4    all along the watchtower
dtype: object

s2.str.upper():
0          STAIRWAY TO HEAVEN
1                    ERUPTION
2                    FREEBIRD
3            COMFORTABLY NUMB
4    ALL ALONG THE WATCHTOWER
dtype: object

s2.str.len():
0    18
1     8
2     8
3    16
4    24
dtype: int64

结束语

本文是pandas的入门教程,因此我们只介绍了最基本的操作。更深入的内容,以后有机会我们再来一起学习。

读者也可以根据下面的链接获取更多的知识。

参考资料与推荐读物

目录
相关文章
|
15天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
45 4
数据分析的 10 个最佳 Python 库
|
1天前
|
XML JSON 数据库
Python的标准库
Python的标准库
22 11
|
14天前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
65 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
1天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
25 8
|
9天前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
20 4
|
15天前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
17天前
|
测试技术 Python
Python中的异步编程与`asyncio`库
Python中的异步编程与`asyncio`库
|
7天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
6天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
13天前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
127 59