mahout0.11 taste框架推荐引擎api

简介: 所需jar包数据格式以逗号分隔1,101,5.01,102,3.01,103,2.52,101,2.02,102,2.52,103,5.02,104,2.03,101,2.03,104,4.03,105,4.53,107,5.04,101,5.04,103,3.04,104,4.54,106,4.05,101,4.05,102,3.05,103,2


wKioL1ZKyGuzB55-AAZC2Akf-Og878.png

所需jar包

wKioL1ZKx0fwtCPcAAALlJ7stHE703.png


数据格式以逗号分隔

1,101,5.0
1,102,3.0
1,103,2.5
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
3,101,2.0
3,104,4.0
3,105,4.5
3,107,5.0
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0
6,102,4.0
6,103,2.0
6,105,3.5
6,107,4.0


基于用户推荐

import java.io.File;
import java.util.List;

import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;


public class UserItemRecommend {
public static void main(String[] args) throws Exception{
    //创建数据模型
    DataModel dm = new FileDataModel(new File("C:/test.txt"));
    //使用user来推荐,计算相似度
    UserSimilarity us=new PearsonCorrelationSimilarity(dm);
    //查找K(3)近邻
    UserNeighborhood unb=new NearestNUserNeighborhood(3, us, dm);
 //构造推荐引擎
    Recommender re =new GenericUserBasedRecommender(dm, unb, us);
//显示推荐结果,为1号用户推荐两个商品
    List<RecommendedItem> list = re.recommend(1, 2);
    for(RecommendedItem recommendedItem :list)
    {
        System.out.println(recommendedItem);
    }
}
    
}

推荐结果

RecommendedItem[item:104, value:4.257081]
RecommendedItem[item:106, value:4.0]


基于商品

import java.io.File;
import java.util.List;

import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.recommender.GenericItemBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.ItemSimilarity;


public class ItemUserRecommend {
public static void main(String[] args) throws Exception{
    //创建数据模型
    DataModel dm = new FileDataModel(new File("C:/test.txt"));

    ItemSimilarity is=new PearsonCorrelationSimilarity(dm);
    
 //构造推荐引擎
    Recommender re =new GenericItemBasedRecommender(dm,is);
//显示推荐结果,为1号用户推荐两个商品
    List<RecommendedItem> list = re.recommend(1, 2);
    for(RecommendedItem recommendedItem :list)
    {
        System.out.println(recommendedItem);
    }
}
    
}


slopeone算法,0.9版本已移除,要使用只能用0.8

import java.io.File;
import java.util.List;

import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.recommender.GenericItemBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.ItemSimilarity;


public class SlopeOneRecommend {
public static void main(String[] args) throws Exception{
    //创建数据模型
    DataModel dm = new FileDataModel(new File("C:/test.txt"));

    
    
 //构造推荐引擎
    Recommender re =new SlopeOneRecommender(dm);;
//显示推荐结果,为1号用户推荐两个商品
    List<RecommendedItem> list = re.recommend(1, 2);
    for(RecommendedItem recommendedItem :list)
    {
        System.out.println(recommendedItem);
    }
}
    
}


本文出自 “点滴积累” 博客,请务必保留此出处http://tianxingzhe.blog.51cto.com/3390077/1713455

目录
相关文章
|
2月前
|
API
用 Koa 框架实现一个简单的 RESTful API
用 Koa 框架实现一个简单的 RESTful API
|
3月前
|
Java API 数据库
构建RESTful API已经成为现代Web开发的标准做法之一。Spring Boot框架因其简洁的配置、快速的启动特性及丰富的功能集而备受开发者青睐。
【10月更文挑战第11天】本文介绍如何使用Spring Boot构建在线图书管理系统的RESTful API。通过创建Spring Boot项目,定义`Book`实体类、`BookRepository`接口和`BookService`服务类,最后实现`BookController`控制器来处理HTTP请求,展示了从基础环境搭建到API测试的完整过程。
66 4
|
3月前
|
XML JSON API
ServiceStack:不仅仅是一个高性能Web API和微服务框架,更是一站式解决方案——深入解析其多协议支持及简便开发流程,带您体验前所未有的.NET开发效率革命
【10月更文挑战第9天】ServiceStack 是一个高性能的 Web API 和微服务框架,支持 JSON、XML、CSV 等多种数据格式。它简化了 .NET 应用的开发流程,提供了直观的 RESTful 服务构建方式。ServiceStack 支持高并发请求和复杂业务逻辑,安装简单,通过 NuGet 包管理器即可快速集成。示例代码展示了如何创建一个返回当前日期的简单服务,包括定义请求和响应 DTO、实现服务逻辑、配置路由和宿主。ServiceStack 还支持 WebSocket、SignalR 等实时通信协议,具备自动验证、自动过滤器等丰富功能,适合快速搭建高性能、可扩展的服务端应用。
214 3
|
2月前
|
缓存 API 数据库
Python哪个框架合适开发速卖通商品详情api?
在跨境电商平台速卖通的商品详情数据获取与整合中,Python 语言及其多种框架(如 Flask、Django、Tornado 和 FastAPI)提供了高效解决方案。Flask 简洁灵活,适合快速开发;Django 功能全面,适用于大型项目;Tornado 性能卓越,擅长处理高并发;FastAPI 结合类型提示和异步编程,开发体验优秀。选择合适的框架需综合考虑项目规模、性能要求和团队技术栈。
35 2
|
2月前
|
JSON JavaScript 中间件
Koa框架下的RESTful API设计与实现
在现代 Web 开发中,构建高效、可维护的 API 是至关重要的。Koa 是一个流行的 Node.js Web 应用框架,它具有简洁、灵活和强大的特性,非常适合用于设计和实现 RESTful API。
|
2月前
|
开发框架 Java 关系型数据库
Java哪个框架适合开发API接口?
在快速发展的软件开发领域,API接口连接了不同的系统和服务。Java作为成熟的编程语言,其生态系统中出现了许多API开发框架。Magic-API因其独特优势和强大功能,成为Java开发者优选的API开发框架。本文将从核心优势、实际应用价值及未来展望等方面,深入探讨Magic-API为何值得选择。
91 2
|
2月前
|
API PHP 数据库
PHP中哪个框架最适合做API?
在数字化时代,API作为软件应用间通信的桥梁至关重要。本文探讨了PHP中适合API开发的主流框架,包括Laravel、Symfony、Lumen、Slim、Yii和Phalcon,分析了它们的特点和优势,帮助开发者选择合适的框架,提高开发效率、保证接口稳定性和安全性。
96 3
|
2月前
|
JavaScript 中间件 API
Node.js进阶:Koa框架下的RESTful API设计与实现
【10月更文挑战第28天】本文介绍了如何在Koa框架下设计与实现RESTful API。首先概述了Koa框架的特点,接着讲解了RESTful API的设计原则,包括无状态和统一接口。最后,通过一个简单的博客系统示例,详细展示了如何使用Koa和koa-router实现常见的CRUD操作,包括获取、创建、更新和删除文章。
72 4
|
2月前
|
安全 API 数据库
Python哪个框架合适开发淘宝商品详情api?
在数字化商业时代,开发淘宝商品详情API成为企业拓展业务的重要手段。Python凭借其强大的框架支持,如Flask、Django、Tornado和FastAPI,为API开发提供了多样化的选择。本文探讨了这些框架的特点、优势及应用场景,帮助开发者根据项目需求选择最合适的工具,确保API的高效、稳定与可扩展性。
35 0
|
2月前
|
安全 API 网络架构
Python中哪个框架最适合做API?
本文介绍了Python生态系统中几个流行的API框架,包括Flask、FastAPI、Django Rest Framework(DRF)、Falcon和Tornado。每个框架都有其独特的优势和适用场景。Flask轻量灵活,适合小型项目;FastAPI高性能且自动生成文档,适合需要高吞吐量的API;DRF功能强大,适合复杂应用;Falcon高性能低延迟,适合快速API开发;Tornado异步非阻塞,适合高并发场景。文章通过示例代码和优缺点分析,帮助开发者根据项目需求选择合适的框架。
303 0

热门文章

最新文章