安卓应用安全指南 5.6.2 密码学 规则书

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介: 5.6.2 密码学 规则书 原书:Android Application Secure Design/Secure Coding Guidebook 译者:飞龙 协议:CC BY-NC-SA 4.0使用加密技术时,遵循以下规则:5.6.2.1 指定加密算法时,请显式指定加密模式和填充(必需)在使用加密技术和数据验证等密码学技术时,加密模式和填充必须显式指定。

5.6.2 密码学 规则书

原书:Android Application Secure Design/Secure Coding Guidebook

译者:飞龙

协议:CC BY-NC-SA 4.0

使用加密技术时,遵循以下规则:

5.6.2.1 指定加密算法时,请显式指定加密模式和填充(必需)

在使用加密技术和数据验证等密码学技术时,加密模式和填充必须显式指定。 在 Android 应用开发中使用加密时,你将主要使用java.crypto中的Cipher类。 为了使用Cipher类,你将首先通过指定要使用的加密类型,来创建Cipher类对象的实例。 这个指定被称为转换,并且有两种格式可以指定转换:

  • 算法/模式/填充
  • 算法

在后一种情况下,加密模式和填充将隐式设置为 Android 可以访问的加密服务供应器的适当默认值。 这些默认值优先考虑便利性和兼容性而选择,并且在某些情况下可能不是特别安全的选择。 为此,为了确保正确的安全保护,必须使用两种格式中的前者,其中显式指定了加密模式和填充。

5.6.2.2 使用强算法(特别是符合相关标准的算法)(必需)

使用加密技术时,选择符合特定标准的强算法很重要。 此外,在算法允许多个密钥长度的情况下,重要的是要考虑应用的整个产品生命周期,并选择足以确保安全性的密钥长度。 此外,对于一些加密模式和填充模式,存在已知的攻击策略;对这些威胁做出有力的选择是非常重要的。

确实,选择弱加密方法会造成灾难性后果。 例如,被加密来防止第三方窃听的文件,实际上可能仅受到无效保护,并且可能允许第三方窃听。 由于 IT 的不断进步导致加密分析技术的持续改进,因此至关重要的是,考虑并选择一个算法,它能够在运行的整个期间,保证安全性。在此时间,你希望应用保持运行。

实际加密技术的标准因国家而异,详见下表(单位:位)。

表 5.6-1 NIST(USA) NIST SP800-57

算法生命周期 对称密钥加密 非对称密钥加密 椭圆曲线加密 HASH(数字签名) HASH(随机数生成)
~2010 80 1024 160 160 160
~2030 112 2048 224 224 160
2030~ 128 3072 256 256 160

表 5.6-2 ECRYPT II (EU)

算法生命周期 对称密钥加密 非对称密钥加密 椭圆曲线加密 HASH
2009~2012 80 1248 160 160
2009~2020 96 1776 192 192
2009~2030 112 2432 224 224
2009~2040 128 3248 256 256
2009~ 256 15424 512 512

表 5.6-3 CRYPTREC(Japan) CRYPTREC 加密算法列表

技术族 名称
公钥加密 签名 DSA,ECDSA,RSA-PSS,RSASSA-PKCS1-V1_5
机密性 RSA-OAEP
密钥共享 DH,ECDH
共享密钥加密 64 位块加密 3-key Triple DES
128 位块加密 AES,Camellia
流式加密 KCipher-2
哈希函数 SHA-256,SHA-384,SHA-512
加密使用模式 密文模式 CBC,CFB,CTR,OFB
认证密文模式 CCM,GCM
消息认证代码 CMAC,HMAC
实体认证 ISO/IEC 9798-2,ISO/IEC 9798-3

5.6.2.3 使用基于密码的加密时,不要在设备上存储密码(必需)

在基于密码的加密中,当根据用户输入的密码生成加密密钥时,请勿将密码存储在设备中。 基于密码的加密的优点是无需管理加密密钥;将密码存储在设备上消除了这一优势。 无需多说,在设备上存储密码会产生其他应用窃听的风险,因此出于安全原因,在设备上存储密码也是不可接受的。

5.6.2.4 从密码生成密钥时,使用盐(必需)

在基于密码的加密中,当根据用户输入的密码生成加密密钥时,请始终使用盐。 另外,如果你要在同一设备中为不同用户提供功能,请为每个用户使用不同的盐。 原因是,如果你仅使用简单的哈希函数生成加密密钥而不使用盐,则可以使用称为“彩虹表”的技术轻松恢复密码。使用了盐时,会使用相同的密码生成的密钥 将是不同的(不同的哈希值),防止使用彩虹表来搜索密钥。

示例:

public final byte[] encrypt(final byte[] plain, final char[] password) {
    byte[] encrypted = null;
    try {
        // *** POINT *** Explicitly specify the encryption mode and the padding.
        // *** POINT *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
        Cipher cipher = Cipher.getInstance(TRANSFORMATION);
        // *** POINT *** When generating keys from passwords, use Salt.
        SecretKey secretKey = generateKey(password, mSalt);

5.6.2.5 从密码生成密钥时,指定适当的哈希迭代计数(必需)

在基于密码的加密中,当根据用户输入的密码生成加密密钥时,你需要选择在密钥生成过程(“拉伸”)中,散列过程的重复次数;指定足够大的数字来确保安全性非常重要。一般来说,1,000 或更大的迭代次数是足够的。如果你使用密钥来保护更有价值的资产,请指定 1,000,000 或更高的计数。由于散列函数的单个计算所需的处理时间很少,因此攻击者可能很容易进行爆破攻击。因此,通过使用拉伸方法(其中散列处理重复多次),我们可以有意确保该过程消耗大量时间,因此爆破攻击的成本更高。请注意,拉伸重复次数也会影响应用的处理速度,因此请谨慎选择合适的值。

示例:

private static final SecretKey generateKey(final char[] password, final byte[] salt) {
    SecretKey secretKey = null;
    PBEKeySpec keySpec = null;

    (Omit)

    // *** POINT *** When generating a key from password, use Salt.
    // *** POINT *** When generating a key from password, specify an appropriate hash iteration count.
    // *** POINT *** Use a key of length sufficient to guarantee the strength of encryption. 
    keySpec = new PBEKeySpec(password, salt, KEY_GEN_ITERATION_COUNT, KEY_LENGTH_BITS);

5.6.2.6 采取措施来增加密码强度(推荐)

在基于密码的加密中,当基于用户输入的密码生成加密密钥时,生成的密钥的强度受用户密码强度的强烈影响,因此值得采取措施来加强从用户那里收到的密码。 例如,你可以要求密码长度至少为 8 个字符,并且包含多种类型的字符 - 可能至少包含一个字母,一个数字和一个符号。

相关文章
|
10月前
|
安全 Linux Android开发
Android 安全功能
Android 安全功能
117 0
|
10月前
|
安全 Linux Android开发
Android安全启动学习(一):AVB校验是什么?
Android安全启动学习(一):AVB校验是什么?
552 0
|
10月前
|
存储 安全 Linux
Android安全启动学习(四):device-mapper-verity (dm-verity)和哈希树
Android安全启动学习(四):device-mapper-verity (dm-verity)和哈希树
481 0
|
1月前
|
算法 安全 Java
即时通讯安全篇(一):正确地理解和使用Android端加密算法
本文主要讨论针对Android这样的移动端应用开发时,如何正确的理解目前常用的加密算法,为诸如即时通讯应用的实战开发,如何在合适的场景下选择适合的算法,提供一些参考。
54 0
|
3月前
|
存储 安全 Android开发
探索Android系统的最新安全特性
在数字时代,智能手机已成为我们生活中不可或缺的一部分。随着技术的不断进步,手机操作系统的安全性也越来越受到重视。本文将深入探讨Android系统最新的安全特性,包括其设计理念、实施方式以及对用户的影响。通过分析这些安全措施如何保护用户免受恶意软件和网络攻击的威胁,我们希望为读者提供对Android安全性的全面了解。
|
5月前
|
安全 网络安全 Android开发
深度解析:利用Universal Links与Android App Links实现无缝网页至应用跳转的安全考量
【10月更文挑战第2天】在移动互联网时代,用户经常需要从网页无缝跳转到移动应用中。这种跳转不仅需要提供流畅的用户体验,还要确保安全性。本文将深入探讨如何利用Universal Links(仅限于iOS)和Android App Links技术实现这一目标,并分析其安全性。
717 0
|
8月前
|
存储 安全 数据安全/隐私保护
🔎Android安全攻防实战!守护你的应用数据安全,让用户放心使用!🛡️
【7月更文挑战第28天】在移动应用盛行的时代,确保Android应用安全性至关重要。本文以问答形式探讨了主要安全威胁(如逆向工程、数据窃取)及其对策。建议使用代码混淆、签名验证、数据加密等技术来增强应用保护。此外,还推荐了加密API、HTTPS通信、代码审计等措施来进一步加强安全性。综上所述,全面的安全策略对于构建安全可靠的应用环境必不可少。#Android #应用安全 #代码混淆 #数据加密
185 3
|
8月前
|
存储 安全 Android开发
安卓应用开发的安全之道
【7月更文挑战第4天】在数字时代,移动应用的安全性至关重要。本文将深入探讨在安卓平台上开发安全应用的最佳实践,包括代码混淆、数据存储加密、网络通信安全、权限管理以及定期的安全审计和更新策略。通过这些措施,开发者可以显著提高他们的应用抵御恶意攻击的能力,保护用户数据免受侵害。
|
9月前
|
安全 网络协议 网络安全
程序与技术分享:Android应用安全之数据传输安全
程序与技术分享:Android应用安全之数据传输安全
|
存储 安全 Java
Android DataStore:安全存储和轻松管理数据
Android DataStore:安全存储和轻松管理数据

热门文章

最新文章