大数据技术的4个E

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

sjjt_209_1_

大数据的4个V说法在业界已经尽人皆知,这是指的大数据本身的特征。现在我们来考察一下用于处理大数据的技术应该具有的特性。为方便记忆,类似4个V,我们把这些特性总结成4个E,用户在选择大数据技术解决方案时可作为参考。

1. Easy 大数据技术要足够简单易用

这个E很容易理解。

要进行大数据处理的场景很多,涉及工作人员也是各种各样的。如果技术的难度太大,那会导致只有少数人能应用,而且实施复杂度较高,这样大数据的应用就会大打折扣了。

大数据领域这种例子并不少,Hadoop刚出来时只有MapReduce,相对于完全用Java硬写,MapReduce已经简单了很多,所以会积累出一批拥趸。但MapReduce的难度仍然不小,所以逐步被后来封装出来的HIVE SQL替代。Spark上的Scala也风靡过一阵,但难度仍然不少,目前也逐步归于平静,更多的人还是愿意使用更简单的Spark SQL。

2. Elastic 大数据技术要具有弹性扩展能力

这个E也容易理解。

很多情况下,大数据并不是一下子就很大,而是逐步变大的。即使已经较大的数据,也还会进一步变得更大。因此要求大数据处理技术有一定的弹性扩展能力就是很自然的事情,这一点一般都不会被大数据技术提供商忽略掉。

当然,任何技术都有局限性,面向一般规模和面向超大规模的技术相差是很大的,不大可能有一种技术能够有效适应数据规模从0到无穷大的各个阶段(所谓有效适应是在各个阶段该技术都能达到相当优良的性能,而不只是可以处理),用户在选择技术时还要对自己的数据规模变化范围有一个预估。

3. Embeddable 大数据技术应可以被嵌入集成

这个E需要特别指出,常常不被重视。

大数据处理经常并不是一件独立的事情,它需要和具体的应用配合工作才能发挥其业务价值,这些处理常常在应用执行到某个环节时就需要进行,这样就要求相应的技术能够被方便地嵌入集成到应用程序中,随时随地被主程序调用。

特别地,大部分应用程序建立在J2EE架构上,因而对Java应用的可集成性就是个特别重要的指标。一般基于Java或SQL体系的大数据技术在集成方面都没太大问题,而其它技术体系的就难说了。而且,大多数大数据技术常常需要独立部署,即使其计算能力可以被集成,但必须依赖于外部的独立进程,不能被应用完全控制,有时会显得非常累赘。

4. Environment-friendly 大数据技术对数据环境要求尽量低

这个E是很多大数据技术不具有但却很重要的。

目前的大数据技术,如Hadoop和MPP等,都要求先把数据放进该技术规定的某种存储体系中。这样当然有意义,数据事先组织之后会获得更高的性能。但是,经常的情况是,我们需要处理的大数据事先并不在这些存储体系中,而且把外部数据搬进这些存储体系本身也是一种大数据处理,这些场景下都无法利用这些大数据技术了。

更好的大数据技术应当能不挑数据源,随便什么来源的数据都可以处理,只是有可能因为数据源的限制而一定程度地降低性能,但并不要求必须先做好ETL才能处理。

其实最后那个特性用E并不是很贴切,但为了凑4个E就对付了。这个词本来是环保的意思,开放的大数据技术可以少复制一些数据,少部署一些硬件,省点电,也算环保吧。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
6天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
31 2
|
25天前
|
存储 分布式计算 数据可视化
大数据常用技术与工具
【10月更文挑战第16天】
86 4
|
8天前
|
存储 分布式计算 NoSQL
【赵渝强老师】大数据技术的理论基础
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
|
1月前
|
存储 数据采集 监控
大数据技术:开启智能决策与创新服务的新纪元
【10月更文挑战第5天】大数据技术:开启智能决策与创新服务的新纪元
|
8天前
|
SQL 存储 算法
比 SQL 快出数量级的大数据计算技术
SQL 是大数据计算中最常用的工具,但在实际应用中,SQL 经常跑得很慢,浪费大量硬件资源。例如,某银行的反洗钱计算在 11 节点的 Vertica 集群上跑了 1.5 小时,而用 SPL 重写后,单机只需 26 秒。类似地,电商漏斗运算和时空碰撞任务在使用 SPL 后,性能也大幅提升。这是因为 SQL 无法写出低复杂度的算法,而 SPL 提供了更强大的数据类型和基础运算,能够实现高效计算。
|
11天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
28 3
|
11天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
42 2
|
14天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
47 2
|
16天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
62 2