量子粒子群优化算法

简介:
#include <iostream>
#include <math.h>
#include <time.h>
using namespace std;

#define M 50  //群体数目50
#define N 4   //每个粒子的维数4
//测试类
class TestFunction
{
    public:
        double resen(double x1,double x2,double x3,double x4)
        {
            double s=0;
            s=100*(x2-x1*x1)*(x2-x1*x1)+(1-x1)*(1-x1)+s;
            s=100*(x3-x2*x2)*(x3-x2*x2)+(1-x2)*(1-x2)+s;
            s=100*(x4-x3*x3)*(x4-x3*x3)+(1-x3)*(1-x3)+s;
            return s;
        }
};

class CQPSO
{
    private:
        double delta;
        double (*w)[N];// = new double[50][4]; //总体粒子
        double *f;//=new double[M];//适应度值
        double *ff;//=new double[M];//相对f的比较值
        double (*p)[N];//=new double[M][N];
        double *g;//=new double[N];
        double *c;//=new double[N];
        TestFunction *tf;// = new TestFunction;
        double random()
        {
            double s;
            s=(abs(rand())%10000+10000)/10000.0-1.0;    
            return s;
        }
    public:
        CQPSO(double delta)
        {
            int i,j;
            this->delta=delta;
            w=new double[M][N];
            f=new double[M];
            ff=new double[M];
            p=new double[M][N];
            g=new double[N];
            c=new double[N];
            tf=new TestFunction;
            for(i=0;i<M;i++)
            {
                for(j=0;j<N;j++)
                {
                    w[i][j]=random();
                }
            }
            
        }

        void CQPSOmethod(int count)
        {
            int i,j;
            if(count==1)
            {
                for(i=0;i<M;i++)
                {
                    for(j=0;j<N;j++)
                    {
                        p[i][j]=w[i][j];
                    }
                    f[i]=tf->resen(w[i][0],w[i][1],w[i][2],w[i][3]);
                }
                cqpso_p(f);//得出全局最优
            }

            if(count>1)
            {
                cqpso_update( w );
                for(i=0;i<M;i++)
                {
                    ff[i]=tf->resen(w[i][0],w[i][1],w[i][2],w[i][3]);
                    if(ff[i]<f[i])
                    {    
                        f[i]=ff[i];
                        for(j=0;j<N;j++) p[i][j]=w[i][j];
                    }
                }
                cqpso_p(f);
            }
            cout<<(tf->resen(g[0],g[1],g[2],g[3]))<<endl;
        }



        void cqpso_p(double *f)//得到个体最优中最小值——全局最优
        {
            double temp=f[0];
            int i,j;
            for(i=1;i<M;i++)
            {
                if(f[i]<temp)
                {
                    temp=f[i];
                }
            }
            for(i=0;i<M;i++)
            {
                if(temp==f[i])
                {
                    for(j=0;j<N;j++)
                    {
                        g[j]=p[i][j];
                    }
                    break;
                }
            }
        }    
        void cqpso_c(double (*p)[N])
        {
            int i,j;
            for(i=0;i<N;i++)  c[i]=0;
            for(i=0;i<N;i++)
            {
                for(j=0;j<M;j++)
                {
                    c[i]=c[i]+p[j][i];
                }
            }
            for(i=0;i<N;i++) c[i]=c[i]/M;
        }

        void cqpso_update( double (*w)[N] )
        {
            int i,j;
            double *fai=new double[N];
            double (*u)[N]=new double[M][N];
            double (*pp)[N]=new double[M][N];
            for(i=0;i<N;i++)
            {
                fai[i]=random();
            }
            for(i=0;i<M;i++)
            {
                for(j=0;j<N;j++)
                    u[i][j]=random();
            }
            cqpso_c( p );
            for(i=0;i<M;i++)
            {
                for(j=0;j<N;j++)
                    pp[i][j]=fai[j]*p[i][j]+g[j]*(1-fai[j]);
            }
            for(i=0;i<M;i++)
            {
                for(j=0;j<N;j++)
                    w[i][j]=pp[i][j]+delta*(abs(c[j]-w[i][j]))*log(1/u[i][j]);
            }
        }
    
};

int main()
{
    int i;
    srand((unsigned)time(0)); 
    CQPSO *qo = new CQPSO(0.5);
    //qo->w=new double[M][N];
    for(i=1;i<100;i++)
    qo->CQPSOmethod(i);
}


原文发布时间为:2016-08-10
本文作者:孙俊
本文来源:博客园,如需转载请联系原作者。

目录
相关文章
|
3天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
10天前
|
存储 关系型数据库 分布式数据库
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称
PolarDB的PolarStore存储引擎以其高效的索引结构、优化的数据压缩算法、出色的事务处理能力著称。本文深入解析PolarStore的内部机制及优化策略,包括合理调整索引、优化数据分布、控制事务规模等,旨在最大化其性能优势,提升数据存储与访问效率。
22 5
|
24天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
25天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
1月前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
2月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
2天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
15天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。