资源 | 16个GitHub收藏和贡献率最高的深度学习框架

简介:

深度学习是一种基于对数据进行表证学习的机器学习方法,近些年不断发展并广受欢迎。

作为一个相对较新的概念,对于无论是想要进入该领域的初学者,还是已经熟知方法的老手来说,触手可及的学习资源太丰富了。

为了不被日新月异的技术和潮流所淘汰,积极参与深度学习社区中开源项目的学习和互动是个很好的方法。

在本文中文摘菌将为大家详细介绍16种GitHub中最受欢迎的深度学习开源平台和开源库,除此之外,还有些比较不错的平台和框架虽然没有进入榜单,文摘菌也列了出来,供大家参考。

64a3de52d95946bbf9d8ad313d32cf6fbfa0da98

GitHub收藏和贡献率最高的16个开源深度学习框架,圆圈的颜色越偏绿色表示框架越新,颜色越偏蓝色表明框架的时间越早。

从上图可知,TensorFlow高居榜首,第二名和第三名的是分别是Keras和Caffe。下面文摘菌就将这些资源分享给大家。

16个最棒的深度学习开源框架和平台

TensorFlow

TensorFlow最初由谷歌的Machine Intelligence research organization 中Google Brain Team的研究人员和工程师开发的。这个框架旨在方便研究人员对机器学习的研究,并简化从研究模型到实际生产的迁移的过程。

收藏: 96655, 贡献人数: 1432, 程序提交次数: 31714, 建立日期: 2015年11月1日。

链接:

https://github.com/tensorflow/tensorflow

Keras

Keras是用Python编写的高级神经网络的API,能够和TensorFlow,CNTK或Theano配合使用。

收藏: 28385, 贡献人数: 653, 程序提交次数: 4468, 建立日期: 2015年3月22日。

链接:

https://github.com/keras-team/keras

Caffe

Caffe是一个重在表达性、速度和模块化的深度学习框架,它由Berkeley Vision and Learning Center(伯克利视觉和学习中心)和社区贡献者共同开发。

收藏: 23750, 贡献人数: 267, 程序提交次数: 4128, 建立日期: 2015年9月8日。

链接:

https://github.com/BVLC/caffe

Microsoft Cognitive Toolkit

Microsoft Cognitive Toolkit(以前叫做CNTK)是一个统一的深度学习工具集,它将神经网络描述为一系列通过有向图表示的计算步骤。

收藏: 14243, 贡献人数: 174, 程序提交次数: 15613, 建立日期: 2014年7月27日。

链接:

https://github.com/Microsoft/CNTK

PyTorch

PyTorch是与Python相融合的具有强大的GPU支持的张量计算和动态神经网络的框架。

收藏: 14101, 贡献人数: 601, 程序提交次数: 10733, 建立日期: 2012年1月22日。

链接:

https://github.com/pytorch/pytorch

Apache MXnet

Apache MXnet是为了提高效率和灵活性而设计的深度学习框架。它允许使用者将符号编程和命令式编程混合使用,从而最大限度地提高效率和生产力。

收藏: 13699, 贡献人数: 516, 程序提交次数: 6953, 建立日期: 2015年4月26日。

链接:

https://github.com/apache/incubator-mxnet

DeepLearning4J

DeepLearning4J和ND4J,DataVec,Arbiter以及RL4J一样,都是Skymind Intelligence Layer的一部分。它是用Java和Scala编写的开源的分布式神经网络库,并获得了Apache 2.0的认证。

收藏:8725, 贡献人数: 141, 程序提交次数: 9647, 建立日期: 2013年11月24日。

链接:

https://github.com/deeplearning4j/deeplearning4j

Theano

Theano可以高效地处理用户定义、优化以及计算有关多维数组的数学表达式。 但是在2017年9月,Theano宣布在1.0版发布后不会再有进一步的重大进展。不过不要失望,Theano仍然是一个非常强大的库足以支撑你进行深度学习方面的研究。

收藏: 8141, 贡献人数: 329, 程序提交次数:27974, 建立日期: 2008年1月6日。

链接:

https://github.com/Theano/Theano

TFLearn

TFLearn是一种模块化且透明的深度学习库,它建立在TensorFlow之上,旨在为TensorFlow提供更高级别的API,以方便和加快实验研究,并保持完全的透明性和兼容性。

收藏: 7933, 贡献人数: 111, 程序提交次数: 589, 建立日期:2016年3月27日。

链接:

https://github.com/tflearn/tflearn

Torch

Torch是Torch7中的主要软件包,其中定义了用于多维张量的数据结构和数学运算。此外,它还提供许多用于访问文件,序列化任意类型的对象等的实用软件。

收藏: 7834, 贡献人数: 133, 程序提交次数: 1335, 建立日期:2012年1月22日。

链接:

https://github.com/torch/torch7

Caffe2

Caffe2是一个轻量级的深度学习框架,具有模块化和可扩展性等特点。它在原来的Caffe的基础上进行改进,提高了它的表达性,速度和模块化。

收藏: 7813, 贡献人数: 187, 程序提交次数: 3678, 建立日期:2015年1月21日。

链接:

https://github.com/caffe2/caffe2

PaddlePaddle

PaddlePaddle(平行分布式深度学习)是一个易于使用的高效、灵活、可扩展的深度学习平台。它最初是由百度科学家和工程师们开发的,旨在将深度学习应用于百度的众多产品中。

收藏: 6726, 贡献人数: 120, 程序提交次数: 13733, 建立日期:2016年8月28日。

链接:

https://github.com/PaddlePaddle/Paddle

DLib

DLib是包含机器学习算法和工具的现代化C ++工具包,用来基于C ++开发复杂的软件从而解决实际问题。

收藏: 4676, 贡献人数: 107, 程序提交次数: 7276, 建立日期:2008年4月27日。

链接:

https://github.com/davisking/dlib

Chainer

Chainer是基于python用于深度学习模型中的独立的开源框架,它提供灵活、直观、高性能的手段来实现全面的深度学习模型,包括最新出现的递归神经网络(recurrent neural networks)和变分自动编码器(variational auto-encoders)。

收藏: 3685, 贡献人数: 160, 程序提交次数: 13700, 建立日期: 2015年4月12日。

链接:

https://github.com/chainer/chainer

Neon

Neon是Nervana开发的基于Python的深度学习库。它易于使用,同时性能也处于最高水准。

收藏: 3466, 贡献人数: 77, 程序提交次数: 1112, 建立日期: 2015年5月3日。

链接:

https://github.com/NervanaSystems/neon

Lasagne

Lasagne是一个轻量级的库,可用于在Theano上建立和训练神经网络。

收藏: 3417, 贡献人数:64, 程序提交次数: 1150, 建立日期:2014年9月7日。

链接:

https://github.com/Lasagne/Lasagne

其他选择

  • H2O.ai

    https://github.com/h2oai/h2o-3

  • PyLearn

    https://github.com/lisa-lab/pylearn2

  • BigDL

    https://github.com/intel-analytics/BigDL

  • Shogun

    https://github.com/shogun-toolbox/shogun

  • Apache SINGA

    https://github.com/apache/incubator-singa

  • Blocks

    https://github.com/mila-udem/blocks

  • Mocha

    https://github.com/pluskid/Mocha.jl


原文发布时间为:2018-05-9
本文作者:文摘菌
本文来自云栖社区合作伙伴“ 大数据文摘”,了解相关信息可以关注“ 大数据文摘”。
相关文章
|
7月前
|
机器学习/深度学习 API 语音技术
|
1月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
50 7
|
1月前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
146 3
|
2月前
|
存储 人工智能 自然语言处理
Github上的十大RAG(信息检索增强生成)框架
信息检索增强生成(RAG)是一种结合了检索系统和生成模型优势的技术,能够显著提升大型语言模型的性能。RAG通过从外部知识库中检索相关信息,增强模型的输入,从而生成更加准确、符合上下文、实时更新的响应。GitHub上涌现出多个开源RAG框架,如Haystack、RAGFlow、txtai等,每个框架都有独特的功能和特性,适用于不同的应用场景。这些框架不仅提高了模型的准确性和可靠性,还增强了过程的透明度和可解释性。
221 2
|
4月前
|
机器学习/深度学习 算法 TensorFlow
深入探索强化学习与深度学习的融合:使用TensorFlow框架实现深度Q网络算法及高效调试技巧
【8月更文挑战第31天】强化学习是机器学习的重要分支,尤其在深度学习的推动下,能够解决更为复杂的问题。深度Q网络(DQN)结合了深度学习与强化学习的优势,通过神经网络逼近动作价值函数,在多种任务中表现出色。本文探讨了使用TensorFlow实现DQN算法的方法及其调试技巧。DQN通过神经网络学习不同状态下采取动作的预期回报Q(s,a),处理高维状态空间。
75 1
|
4月前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
60 0
|
4月前
|
UED 开发者
哇塞!Uno Platform 数据绑定超全技巧大揭秘!从基础绑定到高级转换,优化性能让你的开发如虎添翼
【8月更文挑战第31天】在开发过程中,数据绑定是连接数据模型与用户界面的关键环节,可实现数据自动更新。Uno Platform 提供了简洁高效的数据绑定方式,使属性变化时 UI 自动同步更新。通过示例展示了基本绑定方法及使用 `Converter` 转换数据的高级技巧,如将年龄转换为格式化字符串。此外,还可利用 `BindingMode.OneTime` 提升性能。掌握这些技巧能显著提高开发效率并优化用户体验。
70 0
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习框架之争:全面解析TensorFlow与PyTorch在功能、易用性和适用场景上的比较,帮助你选择最适合项目的框架
【8月更文挑战第31天】在深度学习领域,选择合适的框架至关重要。本文通过开发图像识别系统的案例,对比了TensorFlow和PyTorch两大主流框架。TensorFlow由Google开发,功能强大,支持多种设备,适合大型项目和工业部署;PyTorch则由Facebook推出,强调灵活性和速度,尤其适用于研究和快速原型开发。通过具体示例代码展示各自特点,并分析其适用场景,帮助读者根据项目需求和个人偏好做出明智选择。
107 0
|
4月前
|
存储
【Azure Developer】Github Action部署资源(ARM模板)到Azure中国区时,遇见登录问题的解决办法
【Azure Developer】Github Action部署资源(ARM模板)到Azure中国区时,遇见登录问题的解决办法
|
5月前
|
机器学习/深度学习 PyTorch TensorFlow
PAI DLC与其他深度学习框架如TensorFlow或PyTorch的异同
PAI DLC与其他深度学习框架如TensorFlow或PyTorch的异同

热门文章

最新文章