旋转门数据压缩算法在PostgreSQL中的实现 - 流式压缩在物联网、监控、传感器等场景的应用

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云数据库 RDS SQL Server,基础系列 2核4GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 背景 在物联网、监控、传感器、金融等应用领域,数据在时间维度上流式的产生,而且数据量非常庞大。 例如我们经常看到的性能监控视图,就是很多点在时间维度上描绘的曲线。 又比如金融行业的走势数据等等。 我们想象一下,如果每个传感器或指标每100毫秒产生1个点,一天就是864000个点。

背景

在物联网、监控、传感器、金融等应用领域,数据在时间维度上流式的产生,而且数据量非常庞大。

例如我们经常看到的性能监控视图,就是很多点在时间维度上描绘的曲线。

又比如金融行业的走势数据等等。
screenshot

我们想象一下,如果每个传感器或指标每100毫秒产生1个点,一天就是864000个点。

而传感器或指标是非常多的,例如有100万个传感器或指标,一天的量就接近一亿的量。

假设我们要描绘一个时间段的图形,这么多的点,渲染估计都要很久。

那么有没有好的压缩算法,即能保证失真度,又能很好的对数据进行压缩呢?

旋转门压缩算法原理

旋转门压缩算法(SDT)是一种直线趋势化压缩算法,其本质是通过一条由起点和终点确定的直线代替一系列连续数据点。

该算法需要记录每段时间间隔长度、起点数据和终点数据, 前一段的终点数据即为下一段的起点数据。

其基本原理较为简单, 参见图。
ec9c8725c8278f69c7dc7583b5b1f1ca2cba0673

8fff584de2bc090714ad56d33b708771601a6633

第一个数据点a上下各有一点,它们与a点之间的距离为E(即门的宽度), 这两个点作为“门”的两个支点。

当只有第一个数据点时,两扇门都是关闭的;随着点数越来越多,门将逐步打开;注意到每扇门的宽度是可以伸缩的,在一段时间间隔里面,门一旦打开就不能闭;

只要两扇门未达到平行,或者说两个内角之和小于180°(本文的算法将利用这一点进行判断),这种“转门”操作即可继续进行。

图中第一个时间段是从a到e, 结果是用a点到e点之间的直线代替数据点(a,b,c,d,e); 起到了可控失真(E)的压缩作用。

第二个时间间隔从e点开始,开始时两扇门关闭,然后逐步打开,后续操作与前一段类似。

在PostgreSQL中实现旋转门压缩算法

通过旋转门算法的原理,可以了解到,有几个必要的输入项。

  • 有x坐标和y坐标的点(如果是时间轴上的点,可以通过epoch转换成这种形式)

  • E,即门的宽度,起到了控制压缩失真度的作用

例子

创建测试表

create table tbl(id int, -- ID,可有可无
val numeric, -- 值(如传感器或金融行业的点值)
t timestamp  -- 取值时间戳
);

插入10万条测试数据

insert into tbl select generate_series(1,100000), round((random()*100)::numeric, 2), clock_timestamp()+(generate_series(1,100000) || ' second')::interval ; 

test=> select * from tbl limit 10;
 id |  val  |             t              
----+-------+----------------------------
  1 | 31.79 | 2016-08-12 23:22:27.530318
  2 | 18.23 | 2016-08-12 23:22:28.530443
  3 |  5.14 | 2016-08-12 23:22:29.530453
  4 | 90.25 | 2016-08-12 23:22:30.530459
  5 |  8.17 | 2016-08-12 23:22:31.530465
  6 | 97.43 | 2016-08-12 23:22:32.53047
  7 | 17.41 | 2016-08-12 23:22:33.530476
  8 |  0.23 | 2016-08-12 23:22:34.530481
  9 | 84.67 | 2016-08-12 23:22:35.530487
 10 | 16.37 | 2016-08-12 23:22:36.530493
(10 rows)

时间如何转换成X轴的数值,假设每1秒为X坐标的1个单位

test=> select (extract(epoch from t)-extract(epoch from first_value(t) over())) / 1 as x,  -- 除以1秒为1个单位
val, t from tbl limit 100;
        x         |  val  |             t              
------------------+-------+----------------------------
                0 | 31.79 | 2016-08-12 23:22:27.530318
 1.00012493133545 | 18.23 | 2016-08-12 23:22:28.530443
 2.00013494491577 |  5.14 | 2016-08-12 23:22:29.530453
 3.00014090538025 | 90.25 | 2016-08-12 23:22:30.530459
 4.00014686584473 |  8.17 | 2016-08-12 23:22:31.530465
 5.00015187263489 | 97.43 | 2016-08-12 23:22:32.53047
 6.00015807151794 | 17.41 | 2016-08-12 23:22:33.530476
 7.00016307830811 |  0.23 | 2016-08-12 23:22:34.530481
 8.00016903877258 | 84.67 | 2016-08-12 23:22:35.530487

编写实现螺旋门算法的函数

create or replace function f (
  i_radius numeric,       --  压缩半径
  i_time timestamp,       --  开始时间
  i_interval_s numeric,   --  时间转换间隔 (秒,例如每5秒在坐标上表示1个单位间隔,则这里使用5) 
  query text,             --  需要进行旋转门压缩的数据, 例子 'select t, val from tbl where t>=%L order by t limit 100' , select 子句必须固定, 必须按t排序
  OUT o_val numeric,      --  值,纵坐标 y  (跳跃点y)
  OUT o_time timestamp,   --  时间,横坐标 x (跳跃点x)
  OUT o_x numeric         --  跳跃点x, 通过 o_time 转换
)
returns setof record as $$
declare
  v_time timestamp;       -- 时间变量
  v_x numeric;            -- v_time 转换为v_x
  v_val numeric;          -- y坐标
  v1_time timestamp;      -- 前一点 时间变量
  v1_x numeric;           -- 前一点 v_time 转换为v_x
  v1_val numeric;         -- 前一点 y坐标
  v_start_time numeric;   -- 记录第一条的时间坐标, 用于计算x偏移量
  v_rownum int8 := 0;     -- 用于标记是否第一行
  v_max_angle1 numeric;   -- 最大上门夹角角度
  v_max_angle2 numeric;   -- 最大下门夹角角度
  v_angle1 numeric;       -- 上门夹角角度
  v_angle2 numeric;       -- 下门夹角角度
begin
  for v_time , v_val in execute format(query, i_time) 
  LOOP
    -- 第一行,第一个点,是实际要记录的点位
    v_rownum := v_rownum + 1;
    if v_rownum=1 then 
      v_start_time := extract(epoch from v_time);  
      v_x := 0;  
      o_val := v_val;  
      o_time := v_time;  
      o_x := v_x;  
      -- raise notice 'rownum=1 %, %', o_val,o_time;
      return next;  -- 返回第一个点  
    else
      v_x := (extract(epoch from v_time) - v_start_time) / i_interval_s;  -- 生成X坐标
      SELECT 180-ST_Azimuth(
                              ST_MakePoint(o_x, o_val+i_radius),    -- 门上点
                              ST_MakePoint(v_x, v_val)              -- next point
                           )/(2*pi())*360 as degAz,                 -- 上夹角
                 ST_Azimuth(
                              ST_MakePoint(o_x, o_val-i_radius),    -- 门下点
                              ST_MakePoint(v_x, v_val)              -- next point
                           )/(2*pi())*360 As degAzrev               -- 下夹角
      INTO v_angle1, v_angle2; 

      select GREATEST(v_angle1, v_max_angle1), GREATEST(v_angle2, v_max_angle2) into v_max_angle1, v_max_angle2;

      if (v_max_angle1 + v_max_angle2) >= 180 then  -- 找到四边形外的点位,输出上一个点,并从上一个点开始重新计算四边形
        -- raise notice 'max1 %, max2 %', v_max_angle1 , v_max_angle2;
        -- 复原
        v_angle1 := 0;
        v_max_angle1 := 0;
        v_angle2 := 0;
        v_max_angle2 := 0;

        -- 门已完全打开,输出前一个点的值
        o_val := v1_val; 
        o_time := v1_time; 
        v1_x := (extract(epoch from v1_time) - v_start_time) / i_interval_s;  -- 生成前一个点的X坐标 
        o_x := v1_x; 

        -- 用新的门,与当前点计算新的夹角 
        SELECT 180-ST_Azimuth(
                                ST_MakePoint(o_x, o_val+i_radius),    -- 门上点
                                ST_MakePoint(v_x, v_val)              -- next point
                             )/(2*pi())*360 as degAz,                 -- 上夹角
                   ST_Azimuth(
                                ST_MakePoint(o_x, o_val-i_radius),    -- 门下点
                                ST_MakePoint(v_x, v_val)              -- next point
                             )/(2*pi())*360 As degAzrev               -- 下夹角
        INTO v_angle1, v_angle2;

        select GREATEST(v_angle1, v_max_angle1), GREATEST(v_angle2, v_max_angle2) into v_max_angle1, v_max_angle2; 

        -- raise notice 'new max %, new max %', v_max_angle1 , v_max_angle2;

        -- raise notice 'rownum<>1 %, %', o_val, o_time;

        return next;
      end if; 

      -- 记录当前值,保存作为下一个点的前点
      v1_val := v_val; 
      v1_time := v_time; 
    end if; 
  END LOOP; 
end; 
$$ language plpgsql strict;

压缩测试

门宽为15,起始时间为'2016-08-12 23:22:27.530318',每1秒表示1个X坐标单位。

test=> 
select * from f (
  15, -- 门宽度=15
  '2016-08-12 23:22:27.530318', -- 开始时间
  1, -- 时间坐标换算间隔,1秒
  'select t, val from tbl where t>=%L order by t limit 100'  -- query
);

 o_val |           o_time           |       o_x        
-------+----------------------------+------------------
 18.23 | 2016-08-12 23:22:28.530443 |                0
  5.14 | 2016-08-12 23:22:29.530453 | 1.00001287460327
 90.25 | 2016-08-12 23:22:30.530459 | 2.00001883506775
......
 87.90 | 2016-08-12 23:24:01.53098  | 93.0005400180817
 29.94 | 2016-08-12 23:24:02.530985 | 94.0005450248718
 63.53 | 2016-08-12 23:24:03.53099  | 95.0005497932434
 12.25 | 2016-08-12 23:24:04.530996 | 96.0005559921265
 83.21 | 2016-08-12 23:24:05.531001 | 97.0005609989166
(71 rows)

可以看到100个点,压缩成了71个点。

对比一下原来的100个点的值

test=> select val, t, (extract(epoch from t)-extract(epoch from first_value(t) over()))/1 as x from tbl where t>'2016-08-12 23:22:27.530318' order by t limit 100;
  val  |             t              |        x         
-------+----------------------------+------------------
 18.23 | 2016-08-12 23:22:28.530443 |                0
  5.14 | 2016-08-12 23:22:29.530453 | 1.00001001358032
 90.25 | 2016-08-12 23:22:30.530459 |  2.0000159740448
......
 83.21 | 2016-08-12 23:24:05.531001 | 97.0005581378937
 87.97 | 2016-08-12 23:24:06.531006 | 98.0005631446838
 58.97 | 2016-08-12 23:24:07.531012 | 99.0005691051483
(100 rows)

使用excel绘图,进行压缩前后的对比

上面是压缩后的数据绘图,下面是压缩前的数据绘图

红色标记的位置,就是通过旋转门算法压缩掉的数据。

失真度是可控的。
screenshot

流式压缩的实现

本文略,其实也很简单,这个函数改一下,创建一个以数组为输入参数的函数。

以lambda的方式,实时的从流式输入的管道取数,并执行即可。

也可以写成聚合函数,在基于PostgreSQL 的流式数据库pipelineDB中调用,实现流式计算。
http://www.pipelinedb.com/

小结

通过旋转门算法,对IT监控、金融、电力、水利等监控、物联网、等流式数据进行实时的压缩。

数据不需要从数据库LOAD出来即可在库内完成运算和压缩。

用户也可以根据实际的需求,进行流式的数据压缩,同样数据也不需要从数据库LOAD出来,在数据库端即可完成。

PostgreSQL的功能一如既往的强大,好用,快用起来吧。

参考

  1. http://baike.baidu.com/view/3478397.htm
  2. http://postgis.net/docs/manual-2.2/ST_Azimuth.html
  3. https://www.postgresql.org/docs/devel/static/functions-conditional.html
  4. http://gis.stackexchange.com/questions/25126/how-to-calculate-the-angle-at-which-two-lines-intersect-in-postgis
  5. http://gis.stackexchange.com/questions/668/how-can-i-calculate-the-bearing-between-two-points-in-postgis
  6. http://www.pipelinedb.com/

扩展阅读,用心感受PostgreSQL


内核扩展

《找对业务G点, 体验酸爽 - PostgreSQL内核扩展指南》
https://yq.aliyun.com/articles/55981

《当物流调度遇见PostgreSQL - GIS, 路由, 机器学习 (狮子,女巫,魔衣橱)》
https://yq.aliyun.com/articles/57857

《弱水三千,只取一瓢,当图像搜索遇见PostgreSQL (Haar wavelet)》
https://yq.aliyun.com/articles/58246

《用PostgreSQL支持含有更新,删除,插入的实时流式计算》
https://yq.aliyun.com/articles/30985

《PostgreSQL 内核扩展之 - 管理十亿级3D扫描数据》
https://yq.aliyun.com/articles/57095

《PostgreSQL 内核扩展之 - ElasticSearch同步插件》
https://yq.aliyun.com/articles/56824

《为了部落 - 如何通过PostgreSQL基因配对,产生优良下一代》
https://yq.aliyun.com/articles/55869

《PostgreSQL 结巴分词》
https://yq.aliyun.com/articles/58007

《PostgreSQL 如何高效解决 按任意字段分词检索的问题 - case 1》
https://yq.aliyun.com/articles/58006

《mongoDB BI 分析利器 - PostgreSQL FDW (MongoDB Connector for BI)》
https://yq.aliyun.com/articles/57987

《关键时刻HINT出彩 - PG优化器的参数如何优化、执行计划如何固化》
https://yq.aliyun.com/articles/57945

《PostgreSQL Oracle兼容性之 - 锁定执行计划 (Outline system)》
https://yq.aliyun.com/articles/57999

《使用PostgreSQL 流复制decode 对接kafka,实现数据跨应用融合》
http://www.confluent.io/blog/bottled-water-real-time-integration-of-postgresql-and-kafka/


场景与优化

《PostgreSQL 如何潇洒的处理每天上百TB的数据增量》
https://yq.aliyun.com/articles/8528

《PostgreSQL 秒杀场景优化》
https://yq.aliyun.com/articles/3010

《PostgreSQL独孤九式搞定物联网》
https://yq.aliyun.com/articles/52405

《PostgreSQL 用CPU "硬解码" 提升1倍 数值运算能力 助力金融大数据量计算》
https://yq.aliyun.com/articles/7482

《PostgreSQL 百亿数据 秒级响应 正则及模糊查询》
https://yq.aliyun.com/articles/7444

《PostgreSQL 1000亿数据量 正则匹配 速度与激情》
https://yq.aliyun.com/articles/7549

《PostgreSQL 百亿地理位置数据 近邻查询性能优化》
https://yq.aliyun.com/articles/2999


大数据实践

《Greenplum 数据分布黄金法则 - 论分布列与分区的选择》
https://yq.aliyun.com/articles/57822

《阿里云ApsaraDB RDS用户 - OLAP最佳实践》
https://yq.aliyun.com/articles/57778

《Greenplum 资源隔离的原理与源码分析》
https://yq.aliyun.com/articles/57763

《PostgreSQL 多维分析 CASE》
https://yq.aliyun.com/articles/53750

《一致性哈希在分布式数据库中的应用探索》
https://yq.aliyun.com/articles/57954

《PostgreSQL 9.5新特性 width_bucket 位置插值,展示柱状图》
https://yq.aliyun.com/articles/2642

《PostgreSQL 9.5 新特性 高斯(正态)分布和指数分布 数据生成器》
https://yq.aliyun.com/articles/2639

《一个简单算法可以帮助物联网,金融 用户 节约98%的数据存储成本》
https://yq.aliyun.com/articles/18042

《开源数据库 PostgreSQL 攻克并行计算难题》
https://yq.aliyun.com/articles/44655

《PostgreSQL 并行计算 - 助力实时精准营销应用》
https://yq.aliyun.com/articles/44649

《PostgreSQL 计算 任意类型 字段之间的线性相关性》
https://yq.aliyun.com/articles/18038

《HLL 估值算法在PostgreSQL大数据 估值计算中的应用》
http://blog.163.com/digoal@126/blog/static/16387704020131264480325/
http://blog.163.com/digoal@126/blog/static/1638770402013127917876/
http://blog.163.com/digoal@126/blog/static/16387704020131288553810/

《PostgreSQL 流式计算数据库pipelineDB》
http://www.pipelinedb.com/


最佳实践

《固若金汤 - PostgreSQL pgcrypto加密插件》
https://yq.aliyun.com/articles/58377

《PostgreSQL 物联网黑科技 - 瘦身500倍的索引(范围索引 BRIN)》
https://yq.aliyun.com/articles/27860

《PostgreSQL 物联网黑科技 - 阅后即焚》
https://yq.aliyun.com/articles/27722

《如何用PostgreSQL解决一个人工智能 语义去重 的小问题》
https://yq.aliyun.com/articles/25899

《PostgreSQL 老湿机图解平安科技遇到的垃圾回收"坑",及解法》
https://yq.aliyun.com/articles/57710

《PostgreSQL雕虫小技,分组TOP性能提升44倍》
https://yq.aliyun.com/articles/57315

《PostgreSQL 9.6 黑科技 bloom 算法索引,一个索引支撑任意列组合查询》
https://yq.aliyun.com/articles/51131

《PostgreSQL 9.6 攻克金融级多副本可靠性问题》
https://yq.aliyun.com/articles/45518

《distinct xx和count(distinct xx)的 变态优化方法》
https://yq.aliyun.com/articles/39689

《PostgreSQL 百亿级数据范围查询, 分组排序窗口取值 变态优化 case》
https://yq.aliyun.com/articles/39680

《中文模糊查询性能优化 by PostgreSQL trgm》
https://yq.aliyun.com/articles/39033

《PostgreSQL Oracle兼容性之 - connect by》
https://yq.aliyun.com/articles/54657

《论云数据库编程能力的重要性》
https://yq.aliyun.com/articles/38377

《使用sysbench测试阿里云RDS PostgreSQL性能》
https://yq.aliyun.com/articles/35517

《PostgreSQL merge json的正确姿势》
https://yq.aliyun.com/articles/54646

《PostgreSQL 在路上的特性 - 远离触发器, 拥抱内置分区》
https://yq.aliyun.com/articles/54456

《PostgreSQL 如何轻松搞定行驶、运动轨迹合并和切分》
https://yq.aliyun.com/articles/54445

《在PostgreSQL中如何生成kmean算法的测试数据》
https://yq.aliyun.com/articles/53992

《在PostgreSQL中如何生成线性相关的测试数据》
https://yq.aliyun.com/articles/53993


内核探索
《PostgreSQL plan cache 源码浅析 - 如何确保不会计划倾斜》
https://yq.aliyun.com/articles/55719

《为什么用 PostgreSQL 绑定变量 没有 Oracle pin S 等待问题》
https://yq.aliyun.com/articles/55698

《PostgreSQL 同步流复制原理和代码浅析》
https://yq.aliyun.com/articles/55676

《深入浅出PostgreSQL B-Tree索引结构》
https://yq.aliyun.com/articles/53701

《PostgreSQL 可靠性和一致性 代码分析》
https://yq.aliyun.com/articles/37395

《PostgreSQL HOT技术》
src/backend/access/heap/README.HOT

《PostgreSQL B-Tree GIN GIST SP-GIST BRIN HASH索引内部结构》
https://www.pgcon.org/2016/schedule/attachments/434_Index-internals-PGCon2016.pdf


更多内容请访问
云栖PostgreSQL圈子
https: //yq.aliyun.com/groups/29

云栖Greenplum圈子
https: //yq.aliyun.com/groups/13

ApsaraDB 数据库内核组月报(涵盖MySQL PostgreSQL Greenplum mongoDB 等数据库引擎)
http://mysql.taobao.org/monthly/

我的BLOG
http://blog.163.com/digoal@126

我的git
https://github.com/digoal

祝大家玩得开心,欢迎随时来 阿里云促膝长谈业务需求 ,恭候光临。

阿里云的小伙伴们加油,努力 做好内核与服务,打造最贴地气的云数据库

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
目录
相关文章
|
11天前
|
运维 监控 算法
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
|
2月前
|
监控 算法 安全
深度洞察内网监控电脑:基于Python的流量分析算法
在当今数字化环境中,内网监控电脑作为“守城卫士”,通过流量分析算法确保内网安全、稳定运行。基于Python的流量分析算法,利用`scapy`等工具捕获和解析数据包,提取关键信息,区分正常与异常流量。结合机器学习和可视化技术,进一步提升内网监控的精准性和效率,助力企业防范潜在威胁,保障业务顺畅。本文深入探讨了Python在内网监控中的应用,展示了其实战代码及未来发展方向。
|
3月前
|
监控 算法 网络协议
Java 实现局域网电脑屏幕监控算法揭秘
在数字化办公环境中,局域网电脑屏幕监控至关重要。本文介绍用Java实现这一功能的算法,涵盖图像采集、数据传输和监控端显示三个关键环节。通过Java的AWT/Swing库和Robot类抓取屏幕图像,使用Socket进行TCP/IP通信传输图像数据,并利用ImageIO类在监控端展示图像。整个过程确保高效、实时和准确,为提升数字化管理提供了技术基础。
95 15
|
6天前
|
监控 算法 安全
基于 Python 广度优先搜索算法的监控局域网电脑研究
随着局域网规模扩大,企业对高效监控计算机的需求增加。广度优先搜索(BFS)算法凭借其层次化遍历特性,在Python中可用于实现局域网内的计算机设备信息收集、网络连接状态监测及安全漏洞扫描,确保网络安全与稳定运行。通过合理选择数据结构与算法,BFS显著提升了监控效能,助力企业实现智能化的网络管理。
22 6
|
15天前
|
监控 网络协议 算法
基于问题“如何监控局域网内的电脑”——Node.js 的 ARP 扫描算法实现局域网内计算机监控的技术探究
在网络管理与安全领域,监控局域网内计算机至关重要。本文探讨基于Node.js的ARP扫描算法,通过获取IP和MAC地址实现有效监控。使用`arp`库安装(`npm install arp`)并编写代码,可定期扫描并对比设备列表,判断设备上线和下线状态。此技术适用于企业网络管理和家庭网络安全防护,未来有望进一步提升效率与准确性。
32 8
|
22天前
|
存储 监控 算法
员工屏幕监控系统之 C++ 图像差分算法
在现代企业管理中,员工屏幕监控系统至关重要。本文探讨了其中常用的图像差分算法,该算法通过比较相邻两帧图像的像素差异,检测屏幕内容变化,如应用程序切换等。文中提供了C++实现代码,并介绍了其在实时监控、异常行为检测和数据压缩等方面的应用,展示了其实现简单、效率高的特点。
44 15
|
11天前
|
监控 算法 安全
关于公司电脑桌面监控中 PHP 二叉搜索树算法的深度剖析
在现代企业管理中,公司电脑桌面监控系统通过二叉搜索树(BST)算法保障信息安全和提高效率。本文探讨PHP中的BST在监控场景的应用,包括节点定义、插入与查找操作,并展示如何管理时间戳数据,以快速查询特定时间段内的操作记录。BST的高效性使其成为处理复杂监控数据的理想选择。
21 2
|
12天前
|
存储 缓存 监控
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
27 3
|
13天前
|
存储 监控 算法
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
20 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
|
3月前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
139 66

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版