旋转门数据压缩算法在PostgreSQL中的实现 - 流式压缩在物联网、监控、传感器等场景的应用

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 背景 在物联网、监控、传感器、金融等应用领域,数据在时间维度上流式的产生,而且数据量非常庞大。 例如我们经常看到的性能监控视图,就是很多点在时间维度上描绘的曲线。 又比如金融行业的走势数据等等。 我们想象一下,如果每个传感器或指标每100毫秒产生1个点,一天就是864000个点。

背景

在物联网、监控、传感器、金融等应用领域,数据在时间维度上流式的产生,而且数据量非常庞大。

例如我们经常看到的性能监控视图,就是很多点在时间维度上描绘的曲线。

又比如金融行业的走势数据等等。
screenshot

我们想象一下,如果每个传感器或指标每100毫秒产生1个点,一天就是864000个点。

而传感器或指标是非常多的,例如有100万个传感器或指标,一天的量就接近一亿的量。

假设我们要描绘一个时间段的图形,这么多的点,渲染估计都要很久。

那么有没有好的压缩算法,即能保证失真度,又能很好的对数据进行压缩呢?

旋转门压缩算法原理

旋转门压缩算法(SDT)是一种直线趋势化压缩算法,其本质是通过一条由起点和终点确定的直线代替一系列连续数据点。

该算法需要记录每段时间间隔长度、起点数据和终点数据, 前一段的终点数据即为下一段的起点数据。

其基本原理较为简单, 参见图。
ec9c8725c8278f69c7dc7583b5b1f1ca2cba0673

8fff584de2bc090714ad56d33b708771601a6633

第一个数据点a上下各有一点,它们与a点之间的距离为E(即门的宽度), 这两个点作为“门”的两个支点。

当只有第一个数据点时,两扇门都是关闭的;随着点数越来越多,门将逐步打开;注意到每扇门的宽度是可以伸缩的,在一段时间间隔里面,门一旦打开就不能闭;

只要两扇门未达到平行,或者说两个内角之和小于180°(本文的算法将利用这一点进行判断),这种“转门”操作即可继续进行。

图中第一个时间段是从a到e, 结果是用a点到e点之间的直线代替数据点(a,b,c,d,e); 起到了可控失真(E)的压缩作用。

第二个时间间隔从e点开始,开始时两扇门关闭,然后逐步打开,后续操作与前一段类似。

在PostgreSQL中实现旋转门压缩算法

通过旋转门算法的原理,可以了解到,有几个必要的输入项。

  • 有x坐标和y坐标的点(如果是时间轴上的点,可以通过epoch转换成这种形式)
  • E,即门的宽度,起到了控制压缩失真度的作用

例子

创建测试表

create table tbl(id int, -- ID,可有可无
val numeric, -- 值(如传感器或金融行业的点值)
t timestamp  -- 取值时间戳
);

插入10万条测试数据

insert into tbl select generate_series(1,100000), round((random()*100)::numeric, 2), clock_timestamp()+(generate_series(1,100000) || ' second')::interval ; 

test=> select * from tbl limit 10;
 id |  val  |             t              
----+-------+----------------------------
  1 | 31.79 | 2016-08-12 23:22:27.530318
  2 | 18.23 | 2016-08-12 23:22:28.530443
  3 |  5.14 | 2016-08-12 23:22:29.530453
  4 | 90.25 | 2016-08-12 23:22:30.530459
  5 |  8.17 | 2016-08-12 23:22:31.530465
  6 | 97.43 | 2016-08-12 23:22:32.53047
  7 | 17.41 | 2016-08-12 23:22:33.530476
  8 |  0.23 | 2016-08-12 23:22:34.530481
  9 | 84.67 | 2016-08-12 23:22:35.530487
 10 | 16.37 | 2016-08-12 23:22:36.530493
(10 rows)

时间如何转换成X轴的数值,假设每1秒为X坐标的1个单位

test=> select (extract(epoch from t)-extract(epoch from first_value(t) over())) / 1 as x,  -- 除以1秒为1个单位
val, t from tbl limit 100;
        x         |  val  |             t              
------------------+-------+----------------------------
                0 | 31.79 | 2016-08-12 23:22:27.530318
 1.00012493133545 | 18.23 | 2016-08-12 23:22:28.530443
 2.00013494491577 |  5.14 | 2016-08-12 23:22:29.530453
 3.00014090538025 | 90.25 | 2016-08-12 23:22:30.530459
 4.00014686584473 |  8.17 | 2016-08-12 23:22:31.530465
 5.00015187263489 | 97.43 | 2016-08-12 23:22:32.53047
 6.00015807151794 | 17.41 | 2016-08-12 23:22:33.530476
 7.00016307830811 |  0.23 | 2016-08-12 23:22:34.530481
 8.00016903877258 | 84.67 | 2016-08-12 23:22:35.530487

编写实现螺旋门算法的函数

create or replace function f (
  i_radius numeric,       --  压缩半径
  i_time timestamp,       --  开始时间
  i_interval_s numeric,   --  时间转换间隔 (秒,例如每5秒在坐标上表示1个单位间隔,则这里使用5) 
  query text,             --  需要进行旋转门压缩的数据, 例子 'select t, val from tbl where t>=%L order by t limit 100' , select 子句必须固定, 必须按t排序
  OUT o_val numeric,      --  值,纵坐标 y  (跳跃点y)
  OUT o_time timestamp,   --  时间,横坐标 x (跳跃点x)
  OUT o_x numeric         --  跳跃点x, 通过 o_time 转换
)
returns setof record as 
$$

declare
  v_time timestamp;       -- 时间变量
  v_x numeric;            -- v_time 转换为v_x
  v_val numeric;          -- y坐标
  v1_time timestamp;      -- 前一点 时间变量
  v1_x numeric;           -- 前一点 v_time 转换为v_x
  v1_val numeric;         -- 前一点 y坐标
  v_start_time numeric;   -- 记录第一条的时间坐标, 用于计算x偏移量
  v_rownum int8 := 0;     -- 用于标记是否第一行
  v_max_angle1 numeric;   -- 最大上门夹角角度
  v_max_angle2 numeric;   -- 最大下门夹角角度
  v_angle1 numeric;       -- 上门夹角角度
  v_angle2 numeric;       -- 下门夹角角度
begin
  for v_time , v_val in execute format(query, i_time) 
  LOOP
    -- 第一行,第一个点,是实际要记录的点位
    v_rownum := v_rownum + 1;
    if v_rownum=1 then 
      v_start_time := extract(epoch from v_time);  
      v_x := 0;  
      o_val := v_val;  
      o_time := v_time;  
      o_x := v_x;  
      -- raise notice 'rownum=1 %, %', o_val,o_time;
      return next;  -- 返回第一个点  
    else
      v_x := (extract(epoch from v_time) - v_start_time) / i_interval_s;  -- 生成X坐标
      SELECT 180-ST_Azimuth(
                              ST_MakePoint(o_x, o_val+i_radius),    -- 门上点
                              ST_MakePoint(v_x, v_val)              -- next point
                           )/(2*pi())*360 as degAz,                 -- 上夹角
                 ST_Azimuth(
                              ST_MakePoint(o_x, o_val-i_radius),    -- 门下点
                              ST_MakePoint(v_x, v_val)              -- next point
                           )/(2*pi())*360 As degAzrev               -- 下夹角
      INTO v_angle1, v_angle2; 

      select GREATEST(v_angle1, v_max_angle1), GREATEST(v_angle2, v_max_angle2) into v_max_angle1, v_max_angle2;

      if (v_max_angle1 + v_max_angle2) >= 180 then  -- 找到四边形外的点位,输出上一个点,并从上一个点开始重新计算四边形
        -- raise notice 'max1 %, max2 %', v_max_angle1 , v_max_angle2;
        -- 复原
        v_angle1 := 0;
        v_max_angle1 := 0;
        v_angle2 := 0;
        v_max_angle2 := 0;

        -- 门已完全打开,输出前一个点的值
        o_val := v1_val; 
        o_time := v1_time; 
        v1_x := (extract(epoch from v1_time) - v_start_time) / i_interval_s;  -- 生成前一个点的X坐标 
        o_x := v1_x; 

        -- 用新的门,与当前点计算新的夹角 
        SELECT 180-ST_Azimuth(
                                ST_MakePoint(o_x, o_val+i_radius),    -- 门上点
                                ST_MakePoint(v_x, v_val)              -- next point
                             )/(2*pi())*360 as degAz,                 -- 上夹角
                   ST_Azimuth(
                                ST_MakePoint(o_x, o_val-i_radius),    -- 门下点
                                ST_MakePoint(v_x, v_val)              -- next point
                             )/(2*pi())*360 As degAzrev               -- 下夹角
        INTO v_angle1, v_angle2;

        select GREATEST(v_angle1, v_max_angle1), GREATEST(v_angle2, v_max_angle2) into v_max_angle1, v_max_angle2; 

        -- raise notice 'new max %, new max %', v_max_angle1 , v_max_angle2;

        -- raise notice 'rownum<>1 %, %', o_val, o_time;

        return next;
      end if; 

      -- 记录当前值,保存作为下一个点的前点
      v1_val := v_val; 
      v1_time := v_time; 
    end if; 
  END LOOP; 
end; 

$$
 language plpgsql strict;

压缩测试

门宽为15,起始时间为'2016-08-12 23:22:27.530318',每1秒表示1个X坐标单位。

test=> 
select * from f (
  15, -- 门宽度=15
  '2016-08-12 23:22:27.530318', -- 开始时间
  1, -- 时间坐标换算间隔,1秒
  'select t, val from tbl where t>=%L order by t limit 100'  -- query
);

 o_val |           o_time           |       o_x        
-------+----------------------------+------------------
 18.23 | 2016-08-12 23:22:28.530443 |                0
  5.14 | 2016-08-12 23:22:29.530453 | 1.00001287460327
 90.25 | 2016-08-12 23:22:30.530459 | 2.00001883506775
......
 87.90 | 2016-08-12 23:24:01.53098  | 93.0005400180817
 29.94 | 2016-08-12 23:24:02.530985 | 94.0005450248718
 63.53 | 2016-08-12 23:24:03.53099  | 95.0005497932434
 12.25 | 2016-08-12 23:24:04.530996 | 96.0005559921265
 83.21 | 2016-08-12 23:24:05.531001 | 97.0005609989166
(71 rows)

可以看到100个点,压缩成了71个点。

对比一下原来的100个点的值

test=> select val, t, (extract(epoch from t)-extract(epoch from first_value(t) over()))/1 as x from tbl where t>'2016-08-12 23:22:27.530318' order by t limit 100;
  val  |             t              |        x         
-------+----------------------------+------------------
 18.23 | 2016-08-12 23:22:28.530443 |                0
  5.14 | 2016-08-12 23:22:29.530453 | 1.00001001358032
 90.25 | 2016-08-12 23:22:30.530459 |  2.0000159740448
......
 83.21 | 2016-08-12 23:24:05.531001 | 97.0005581378937
 87.97 | 2016-08-12 23:24:06.531006 | 98.0005631446838
 58.97 | 2016-08-12 23:24:07.531012 | 99.0005691051483
(100 rows)

使用excel绘图,进行压缩前后的对比

上面是压缩后的数据绘图,下面是压缩前的数据绘图

红色标记的位置,就是通过旋转门算法压缩掉的数据。

失真度是可控的。
screenshot

流式压缩的实现

本文略,其实也很简单,这个函数改一下,创建一个以数组为输入参数的函数。

以lambda的方式,实时的从流式输入的管道取数,并执行即可。

也可以写成聚合函数,在基于PostgreSQL 的流式数据库pipelineDB中调用,实现流式计算。
http://www.pipelinedb.com/

小结

通过旋转门算法,对IT监控、金融、电力、水利等监控、物联网、等流式数据进行实时的压缩。

数据不需要从数据库LOAD出来即可在库内完成运算和压缩。

用户也可以根据实际的需求,进行流式的数据压缩,同样数据也不需要从数据库LOAD出来,在数据库端即可完成。

PostgreSQL的功能一如既往的强大,好用,快用起来吧。

参考

  1. http://baike.baidu.com/view/3478397.htm
  2. http://postgis.net/docs/manual-2.2/ST_Azimuth.html
  3. https://www.postgresql.org/docs/devel/static/functions-conditional.html
  4. http://gis.stackexchange.com/questions/25126/how-to-calculate-the-angle-at-which-two-lines-intersect-in-postgis
  5. http://gis.stackexchange.com/questions/668/how-can-i-calculate-the-bearing-between-two-points-in-postgis
  6. http://www.pipelinedb.com/

扩展阅读,用心感受PostgreSQL


内核扩展

《找对业务G点, 体验酸爽 - PostgreSQL内核扩展指南》
https://yq.aliyun.com/articles/55981

《当物流调度遇见PostgreSQL - GIS, 路由, 机器学习 (狮子,女巫,魔衣橱)》
https://yq.aliyun.com/articles/57857

《弱水三千,只取一瓢,当图像搜索遇见PostgreSQL (Haar wavelet)》
https://yq.aliyun.com/articles/58246

《用PostgreSQL支持含有更新,删除,插入的实时流式计算》
https://yq.aliyun.com/articles/30985

《PostgreSQL 内核扩展之 - 管理十亿级3D扫描数据》
https://yq.aliyun.com/articles/57095

《PostgreSQL 内核扩展之 - ElasticSearch同步插件》
https://yq.aliyun.com/articles/56824

《为了部落 - 如何通过PostgreSQL基因配对,产生优良下一代》
https://yq.aliyun.com/articles/55869

《PostgreSQL 结巴分词》
https://yq.aliyun.com/articles/58007

《PostgreSQL 如何高效解决 按任意字段分词检索的问题 - case 1》
https://yq.aliyun.com/articles/58006

《mongoDB BI 分析利器 - PostgreSQL FDW (MongoDB Connector for BI)》
https://yq.aliyun.com/articles/57987

《关键时刻HINT出彩 - PG优化器的参数如何优化、执行计划如何固化》
https://yq.aliyun.com/articles/57945

《PostgreSQL Oracle兼容性之 - 锁定执行计划 (Outline system)》
https://yq.aliyun.com/articles/57999

《使用PostgreSQL 流复制decode 对接kafka,实现数据跨应用融合》
http://www.confluent.io/blog/bottled-water-real-time-integration-of-postgresql-and-kafka/


场景与优化

《PostgreSQL 如何潇洒的处理每天上百TB的数据增量》
https://yq.aliyun.com/articles/8528

《PostgreSQL 秒杀场景优化》
https://yq.aliyun.com/articles/3010

《PostgreSQL独孤九式搞定物联网》
https://yq.aliyun.com/articles/52405

《PostgreSQL 用CPU "硬解码" 提升1倍 数值运算能力 助力金融大数据量计算》
https://yq.aliyun.com/articles/7482

《PostgreSQL 百亿数据 秒级响应 正则及模糊查询》
https://yq.aliyun.com/articles/7444

《PostgreSQL 1000亿数据量 正则匹配 速度与激情》
https://yq.aliyun.com/articles/7549

《PostgreSQL 百亿地理位置数据 近邻查询性能优化》
https://yq.aliyun.com/articles/2999


大数据实践

《Greenplum 数据分布黄金法则 - 论分布列与分区的选择》
https://yq.aliyun.com/articles/57822

《阿里云ApsaraDB RDS用户 - OLAP最佳实践》
https://yq.aliyun.com/articles/57778

《Greenplum 资源隔离的原理与源码分析》
https://yq.aliyun.com/articles/57763

《PostgreSQL 多维分析 CASE》
https://yq.aliyun.com/articles/53750

《一致性哈希在分布式数据库中的应用探索》
https://yq.aliyun.com/articles/57954

《PostgreSQL 9.5新特性 width_bucket 位置插值,展示柱状图》
https://yq.aliyun.com/articles/2642

《PostgreSQL 9.5 新特性 高斯(正态)分布和指数分布 数据生成器》
https://yq.aliyun.com/articles/2639

《一个简单算法可以帮助物联网,金融 用户 节约98%的数据存储成本》
https://yq.aliyun.com/articles/18042

《开源数据库 PostgreSQL 攻克并行计算难题》
https://yq.aliyun.com/articles/44655

《PostgreSQL 并行计算 - 助力实时精准营销应用》
https://yq.aliyun.com/articles/44649

《PostgreSQL 计算 任意类型 字段之间的线性相关性》
https://yq.aliyun.com/articles/18038

《HLL 估值算法在PostgreSQL大数据 估值计算中的应用》
http://blog.163.com/digoal@126/blog/static/16387704020131264480325/
http://blog.163.com/digoal@126/blog/static/1638770402013127917876/
http://blog.163.com/digoal@126/blog/static/16387704020131288553810/

《PostgreSQL 流式计算数据库pipelineDB》
http://www.pipelinedb.com/


最佳实践

《固若金汤 - PostgreSQL pgcrypto加密插件》
https://yq.aliyun.com/articles/58377

《PostgreSQL 物联网黑科技 - 瘦身500倍的索引(范围索引 BRIN)》
https://yq.aliyun.com/articles/27860

《PostgreSQL 物联网黑科技 - 阅后即焚》
https://yq.aliyun.com/articles/27722

《如何用PostgreSQL解决一个人工智能 语义去重 的小问题》
https://yq.aliyun.com/articles/25899

《PostgreSQL 老湿机图解平安科技遇到的垃圾回收"坑",及解法》
https://yq.aliyun.com/articles/57710

《PostgreSQL雕虫小技,分组TOP性能提升44倍》
https://yq.aliyun.com/articles/57315

《PostgreSQL 9.6 黑科技 bloom 算法索引,一个索引支撑任意列组合查询》
https://yq.aliyun.com/articles/51131

《PostgreSQL 9.6 攻克金融级多副本可靠性问题》
https://yq.aliyun.com/articles/45518

《distinct xx和count(distinct xx)的 变态优化方法》
https://yq.aliyun.com/articles/39689

《PostgreSQL 百亿级数据范围查询, 分组排序窗口取值 变态优化 case》
https://yq.aliyun.com/articles/39680

《中文模糊查询性能优化 by PostgreSQL trgm》
https://yq.aliyun.com/articles/39033

《PostgreSQL Oracle兼容性之 - connect by》
https://yq.aliyun.com/articles/54657

《论云数据库编程能力的重要性》
https://yq.aliyun.com/articles/38377

《使用sysbench测试阿里云RDS PostgreSQL性能》
https://yq.aliyun.com/articles/35517

《PostgreSQL merge json的正确姿势》
https://yq.aliyun.com/articles/54646

《PostgreSQL 在路上的特性 - 远离触发器, 拥抱内置分区》
https://yq.aliyun.com/articles/54456

《PostgreSQL 如何轻松搞定行驶、运动轨迹合并和切分》
https://yq.aliyun.com/articles/54445

《在PostgreSQL中如何生成kmean算法的测试数据》
https://yq.aliyun.com/articles/53992

《在PostgreSQL中如何生成线性相关的测试数据》
https://yq.aliyun.com/articles/53993


内核探索
《PostgreSQL plan cache 源码浅析 - 如何确保不会计划倾斜》
https://yq.aliyun.com/articles/55719

《为什么用 PostgreSQL 绑定变量 没有 Oracle pin S 等待问题》
https://yq.aliyun.com/articles/55698

《PostgreSQL 同步流复制原理和代码浅析》
https://yq.aliyun.com/articles/55676

《深入浅出PostgreSQL B-Tree索引结构》
https://yq.aliyun.com/articles/53701

《PostgreSQL 可靠性和一致性 代码分析》
https://yq.aliyun.com/articles/37395

《PostgreSQL HOT技术》
src/backend/access/heap/README.HOT

《PostgreSQL B-Tree GIN GIST SP-GIST BRIN HASH索引内部结构》
https://www.pgcon.org/2016/schedule/attachments/434_Index-internals-PGCon2016.pdf


更多内容请访问
云栖PostgreSQL圈子
https://yq.aliyun.com/groups/29

云栖Greenplum圈子
https://yq.aliyun.com/groups/13

ApsaraDB 数据库内核组月报(涵盖MySQL PostgreSQL Greenplum mongoDB 等数据库引擎)
http://mysql.taobao.org/monthly/

我的BLOG
http://blog.163.com/digoal@126

我的git
https://github.com/digoal

祝大家玩得开心,欢迎随时来 阿里云促膝长谈业务需求 ,恭候光临。

阿里云的小伙伴们加油,努力 做好内核与服务,打造最贴地气的云数据库

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
目录
相关文章
|
9天前
|
算法 计算机视觉 Python
Python并查集大揭秘:让你在算法界呼风唤雨,秒杀一切复杂场景!
在编程与算法的广袤天地中,总有一些工具如同神兵利器,能够助你一臂之力,在复杂的问题前游刃有余。今天,我们就来深入探讨这样一件神器——Python并查集(Union-Find),看看它是如何让你在算法界呼风唤雨,轻松应对各种复杂场景的。
21 2
|
12天前
|
算法 调度
贪心算法基本概念与应用场景
尽管贪心算法在许多问题中都非常有效,但它并不总是会产生最优解。因此,在应用贪心算法前,重要的是先分析问题是否适合采用贪心策略。一些问题可能需要通过动态规划或回溯等其他算法来解决,以找到确切的全局最优解。
41 1
WK
|
15天前
|
机器学习/深度学习 算法 数据挖掘
PSO算法的应用场景有哪些
粒子群优化算法(PSO)因其实现简单、高效灵活,在众多领域广泛应用。其主要场景包括:神经网络训练、工程设计、电力系统经济调度与配电网络重构、数据挖掘中的聚类与分类、控制工程中的参数整定、机器人路径规划、图像处理、生物信息学及物流配送和交通管理等。PSO能处理复杂优化问题,快速找到全局最优解或近似解,展现出强大的应用潜力。
WK
18 1
|
2月前
|
存储 SQL 算法
B端算法实践问题之Blink在实时业务场景下的优势如何解决
B端算法实践问题之Blink在实时业务场景下的优势如何解决
27 1
|
2月前
|
监控 物联网 关系型数据库
使用PostgreSQL触发器解决物联网设备状态同步问题
在物联网监控系统中,确保设备状态(如在线与离线)的实时性和准确性至关重要。当设备状态因外部因素改变时,需迅速反映到系统内部。因设备状态数据分布在不同表中,直接通过应用同步可能引入复杂性和错误。采用PostgreSQL触发器自动同步状态变化是一种高效方法。首先定义触发函数,在设备状态改变时更新管理模块表;然后创建触发器,在状态字段更新后执行此函数。此外,还需进行充分测试、监控性能并实施优化,以及在触发函数中加入错误处理和日志记录功能。这种方法不仅提高自动化程度,增强数据一致性与实时性,还需注意其对性能的影响并采取优化措施。
|
2月前
|
SQL 关系型数据库 MySQL
SQL Server、MySQL、PostgreSQL:主流数据库SQL语法异同比较——深入探讨数据类型、分页查询、表创建与数据插入、函数和索引等关键语法差异,为跨数据库开发提供实用指导
【8月更文挑战第31天】SQL Server、MySQL和PostgreSQL是当今最流行的关系型数据库管理系统,均使用SQL作为查询语言,但在语法和功能实现上存在差异。本文将比较它们在数据类型、分页查询、创建和插入数据以及函数和索引等方面的异同,帮助开发者更好地理解和使用这些数据库。尽管它们共用SQL语言,但每个系统都有独特的语法规则,了解这些差异有助于提升开发效率和项目成功率。
130 0
|
2月前
|
SQL 关系型数据库 HIVE
实时计算 Flink版产品使用问题之如何将PostgreSQL数据实时入库Hive并实现断点续传
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
2月前
|
算法
支付宝商业化广告算法问题之在广告场景中,随着业务的发展,面临了哪些阶段的挑战,如何解决
支付宝商业化广告算法问题之在广告场景中,随着业务的发展,面临了哪些阶段的挑战,如何解决
|
3月前
|
算法 计算机视觉 Python
Python并查集大揭秘:让你在算法界呼风唤雨,秒杀一切复杂场景!
【7月更文挑战第18天】并查集是Python中解决集合动态合并与查询的利器,常用于复杂问题。例如,在社交网络中快速判断用户是否在同一朋友圈,通过路径压缩优化的`UnionFind`类实现。另外,计算图像中岛屿数量也可借助并查集,将相邻像素合并成集合。并查集的应用显示了其在算法中的高效和灵活性,是提升编程技能的关键工具。
34 2
|
3月前
|
算法 Java
Java面试题:解释垃圾回收中的标记-清除、复制、标记-压缩算法的工作原理
Java面试题:解释垃圾回收中的标记-清除、复制、标记-压缩算法的工作原理
46 1

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • 下一篇
    无影云桌面