朗锐智科图像采集卡在车流量检测的应用

简介:

如今是智能交通时代,车流量的检测方法虽然有很多种,但是,这些方法中多多少少还是存在了一定的弊端。
图像采集卡
例如,超声波频检测技术:采取接收从车辆或地面反射回来的超声波来判断有无车辆通过的方法,此技术由于受电磁波传播过程中会出现衰减的影响,在实际应用中准确性较差;
空气管道检测技术:通过车辆经过特定管道时,管内空气挤压而触动计数器的方式来检测,此技术显而易见方法比较繁琐,使用寿命短;
电磁感应检测技术:此技术相对来说性能比较稳定、技术比较先进、也不太受环境因素的影响,但是,由于感应装置是固定埋在地面上的,一旦有车辆违章非正常行驶时,就容易产生误差了,而且路面的可维修性也相应降低了。
那么,相比之下,机器视觉车流量技术则更具有成本低、稳定性强、准确性高、应用范围广、以及交通管理信息全面等优点,因此,此技术目前已在国内外高速公路和公路的交通监控系统中得到了广泛的应用。
机器视觉车流量检测技术能够为交通监测提供高质量的图像信息,实现准确可靠地道路交通的监视和控制。
检测系统主要是由视频采集、视频信号处理、车流量检测结果输出等几部分组成的,对应的,这些环节是由机器视觉系统的各部分来完成的。
采用工业相机与图像采集卡负责视频的采集,图像处理软件则实现了视频信号的处理与检测结果的输出。在信号处理环节,要采取不同的算法,例如白天与夜晚的检测所采用的算法是不同的。最终,将车流量信息传到监控中心,这样就完整的实现了整个监控检测过程。
机器视觉系统在智能交通研究领域应用广泛,例如车牌识别、路径识别与跟踪、障碍物识别、驾驶员状态监测、驾驶员视觉增强等。
朗锐智科一直致力于工业视觉领域的研究及开发,拥有多款自主开发的工业智能相机图像采集卡等机器视觉产品,旨在将机器视觉、自动化等技术转换为系统解决方案,为国内广大机器视觉用户提供更为完善的产品及服务。

相关文章
|
7月前
|
机器学习/深度学习 编解码 监控
计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)-1
计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)-1
|
7月前
|
存储 算法 数据可视化
LabVIEW实现基于DCT的野生动物监测无线图像传输
LabVIEW实现基于DCT的野生动物监测无线图像传输
47 3
|
7月前
|
机器学习/深度学习 算法 安全
计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)-2
计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)-2
计算机视觉实战项目4(单目测距与测速+摔倒检测+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A_路径规划+行人车辆计数+动物识别等)-2
|
7月前
|
传感器 机器学习/深度学习 算法
植保机器人视觉传感器与图像采集
植保机器人视觉传感器与图像采集
102 3
|
7月前
|
机器学习/深度学习 算法 前端开发
高速公路表面图像裂缝检测程序
高速公路表面图像裂缝检测程序
|
7月前
|
算法 计算机视觉
基于opencv的指针式仪表的识别与读数
基于opencv的指针式仪表的识别与读数
|
监控 安全 异构计算
头盔佩戴检测(行人跟踪技术检测)
头盔佩戴检测(行人跟踪技术检测)
头盔佩戴检测(行人跟踪技术检测)
|
机器学习/深度学习 传感器 算法
【车道检测】基于帧差法结合hough实现车道检测含播报声音附GUI界面
【车道检测】基于帧差法结合hough实现车道检测含播报声音附GUI界面
|
机器学习/深度学习 传感器 编解码
【车道线检测】基于计算机视觉实现车道线视频检测附matlab代码
【车道线检测】基于计算机视觉实现车道线视频检测附matlab代码
|
算法 API 计算机视觉
智慧交通day03-车道线检测实现03:相机校正和图像校正的实现
标定的图片需要使用棋盘格数据在不同位置、不同角度、不同姿态下拍摄的图片,最少需要3张,当然多多益善,通常是10-20张。该项目中我们使用了20张图片
159 0