面向高功率密度应用的集成化MOSFET调压器可减少外围器件数量

简介:

英飞凌科技股份公司(FSE: IFX / OTCQX: IFNNY)今日推出 IR3883,它是一种简单易用的全集成型高效直流-直流调压器,主要面向需要高能效、高可靠性和良好散热管理的高密度负载点应用。该器件非常适合用于网络、电信、服务器和存储解决方案。该调压器搭载稳定性增强引擎,在简化设计的同时,只需要纯陶瓷电容就可以确保稳定性。比较而言,其他解决方案需要额外配备用于保证稳定性和纹波注入的外围器件。因此,IR3883可减少多达5个外围器件,可简化尺寸小于100平方毫米的电路板布局设计。


IR3883采用尺寸仅为3X3毫米的PQFN封装,输入电压为4.5V至14V,可提供3A的连续输出电流。在负载较低的情况下,它可以进入二极管导通模式,从而降低功耗。此外,它还支持低静态电流模式,是满足节能要求的备用电源的理想选择。 另外,IR3883可针对要求很低纹波的应用关闭DCM,从而避免干扰/拍频。它可输出0.5V至5V的精确电压。可选三个级别的 带温度补偿的内部限流功能,避免了使用大尺寸电感器同时减少了一个电阻。

由于数字化OCSEF可避免因外部噪音引发的误动作,同时简化电路板布局设计,这可从总体上提升系统的稳定性。例如,PVIN/PGND和SW/BOOT相邻,从而优化旁通电容器布局,降低噪声和简化设计。IR3883还具备企业级应用所要求的全面保护功能,预偏置负载启动、过热关机、过流保护、内部软启动、 enable管脚和功率GOOD输出等。



本文出处:畅享网
本文来自云栖社区合作伙伴畅享网,了解相关信息可以关注vsharing.com网站。

目录
相关文章
|
1月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
52 3
|
2月前
|
前端开发 JavaScript UED
探索Python Django中的WebSocket集成:为前后端分离应用添加实时通信功能
通过在Django项目中集成Channels和WebSocket,我们能够为前后端分离的应用添加实时通信功能,实现诸如在线聊天、实时数据更新等交互式场景。这不仅增强了应用的功能性,也提升了用户体验。随着实时Web应用的日益普及,掌握Django Channels和WebSocket的集成将为开发者开启新的可能性,推动Web应用的发展迈向更高层次的实时性和交互性。
102 1
|
2月前
|
Java Maven Docker
gitlab-ci 集成 k3s 部署spring boot 应用
gitlab-ci 集成 k3s 部署spring boot 应用
|
1月前
|
jenkins 测试技术 持续交付
探索自动化测试在持续集成中的应用与挑战
本文深入探讨了自动化测试在现代软件开发流程,特别是持续集成(CI)环境中的关键作用。通过分析自动化测试的优势、实施策略以及面临的主要挑战,旨在为开发团队提供实用的指导和建议。文章不仅概述了自动化测试的基本原理和最佳实践,还详细讨论了如何克服实施过程中遇到的技术难题和管理障碍,以实现更高效、更可靠的软件交付。
|
29天前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
44 1
|
1月前
|
传感器 前端开发 Android开发
在 Flutter 开发中,插件开发与集成至关重要,它能扩展应用功能,满足复杂业务需求
在 Flutter 开发中,插件开发与集成至关重要,它能扩展应用功能,满足复杂业务需求。本文深入探讨了插件开发的基本概念、流程、集成方法、常见类型及开发实例,如相机插件的开发步骤,同时强调了版本兼容性、性能优化等注意事项,并展望了插件开发的未来趋势。
42 2
|
1月前
|
安全 测试技术 数据安全/隐私保护
原生鸿蒙应用市场开发者服务的技术解析:从集成到应用发布的完整体验
原生鸿蒙应用市场开发者服务的技术解析:从集成到应用发布的完整体验
|
3月前
|
机器学习/深度学习 人工智能 搜索推荐
如何让你的Uno Platform应用秒变AI大神?从零开始,轻松集成机器学习功能,让应用智能起来,用户惊呼太神奇!
【9月更文挑战第8天】随着技术的发展,人工智能与机器学习已融入日常生活,特别是在移动应用开发中。Uno Platform 是一个强大的框架,支持使用 C# 和 XAML 开发跨平台应用(涵盖 Windows、macOS、iOS、Android 和 Web)。本文探讨如何在 Uno Platform 中集成机器学习功能,通过示例代码展示从模型选择、训练到应用集成的全过程,并介绍如何利用 Onnx Runtime 等库实现在 Uno 平台上的模型运行,最终提升应用智能化水平和用户体验。
68 1
|
4月前
|
机器学习/深度学习 存储 前端开发
实战揭秘:如何借助TensorFlow.js的强大力量,轻松将高效能的机器学习模型无缝集成到Web浏览器中,从而打造智能化的前端应用并优化用户体验
【8月更文挑战第31天】将机器学习模型集成到Web应用中,可让用户在浏览器内体验智能化功能。TensorFlow.js作为在客户端浏览器中运行的库,提供了强大支持。本文通过问答形式详细介绍如何使用TensorFlow.js将机器学习模型带入Web浏览器,并通过具体示例代码展示最佳实践。首先,需在HTML文件中引入TensorFlow.js库;接着,可通过加载预训练模型如MobileNet实现图像分类;然后,编写代码处理图像识别并显示结果;此外,还介绍了如何训练自定义模型及优化模型性能的方法,包括模型量化、剪枝和压缩等。
73 1

热门文章

最新文章