Kubernetes 编排系统

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
传统型负载均衡 CLB,每月750个小时 15LCU
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 1.1 Kubernetes简介 1.1.1 什么是Kubernetes Kubernetes (通常称为K8s,K8s是将8个字母“ubernete”替换为“8”的缩写) 是用于自动部署、扩展和管理容器化(containerized)应用程序的开源系统。

1.1 Kubernetes简介

1.1.1 什么是Kubernetes

Kubernetes (通常称为K8sK8s是将8个字母“ubernete”替换为“8”的缩写) 是用于自动部署、扩展和管理容器化(containerized)应用程序的开源系统Google设计并捐赠给Cloud Native Computing Foundation(今属Linux基金会)来使用的。

它旨在提供“跨主机集群的自动部署、扩展以及运行应用程序容器的平台”。它支持一系列容器工具, 包括Docker等。CNCF2017年宣布首批Kubernetes认证服务提供商(KCSPs),包含IBMMIRANTIS、华为、inwinSTACK迎栈科技等服务商。

1.1.2 Kubernetes发展史

Kubernetes (希腊语"舵手" "飞行员") Joe BedaBrendan BurnsCraig McLuckie创立,并由其他谷歌工程师,包括Brian GrantTim Hockin进行加盟创作,并由谷歌在2014年首次对外宣布 。它的开发和设计都深受谷歌的Borg系统的影响,它的许多顶级贡献者之前也是Borg系统的开发者。在谷歌内部,Kubernetes的原始代号曾经是Seven,即星际迷航中友好的Borg(博格人)角色。Kubernetes标识中舵轮有七个轮辐就是对该项目代号的致意。

Kubernetes v1.02015721日发布。随着v1.0版本发布,谷歌与Linux 基金会合作组建了Cloud Native Computing Foundation (CNCF)并把Kubernetes作为种子技术来提供。

Rancher Labs在其Rancher容器管理平台中包含了Kubernetes的发布版。Kubernetes也在很多其他公司的产品中被使用,比如Red HatOpenShift产品中,CoreOSTectonic产品中, 以及IBMIBM云私有产品中。

1.1.3 Kubernetes 特点

1、可移植: 支持公有云,私有云,混合云,多重云(multi-cloud

2、可扩展: 模块化, 插件化, 可挂载, 可组合

3、自动化: 自动部署,自动重启,自动复制,自动伸缩/扩展

4、快速部署应用,快速扩展应用

5、无缝对接新的应用功能

6、节省资源,优化硬件资源的使用

1.1.4 Kubernetes规划组件

参考文档:http://docs.kubernetes.org.cn/249.html

Kubernetes定义了一组构建块,它们可以共同提供部署、维护和扩展应用程序的机制。组成Kubernetes的组件设计为松耦合和可扩展的,这样可以满足多种不同的工作负载。可扩展性在很大程度上由Kubernetes API提供——它被作为扩展的内部组件以及Kubernetes上运行的容器等使用。

Pod

Kubernetes的基本调度单元称为“pod。它可以把更高级别的抽象内容增加到容器化组件。一个pod一般包含一个或多个容器,这样可以保证它们一直位于主机上,并且可以共享资源。Kubernetes中的每个pod都被分配一个唯一的(在集群内的)IP地址这样就可以允许应用程序使用端口,而不会有冲突的风险。

Pod可以定义一个卷,例如本地磁盘目录或网络磁盘,并将其暴露在pod中的一个容器之中。pod可以通过Kubernetes API手动管理,也可以委托给控制器来管理。

标签和选择器

Kubernetes使客户端(用户或内部组件)将称为“标签”的键值对附加到系统中的任何API对象,如pod和节点。相应地,“标签选择器”是针对匹配对象的标签的查询。

标签和选择器是Kubernetes中的主要分组机制,用于确定操作适用的组件。

例如,如果应用程序的Pods具有系统的标签 tier ("front-end", "back-end", for example) 和一个 release_track ("canary", "production", for example),那么对所有"back-end" "canary" 节点的操作可以使用如下所示的标签选择器:

 tier=back-end AND release_track=canary 

控制器

控制器是将实际集群状态转移到所需集群状态的对帐循环。它通过管理一组pod来实现。一种控制器是一个“复制控制器”,它通过在集群中运行指定数量的pod副本来处理复制和缩放。如果基础节点出现故障,它还可以处理创建替换pod

其它控制器,是核心Kubernetes系统的一部分包括一个“DaemonSet控制器”为每一台机器(或机器的一些子集)上运行的恰好一个pod,和一个“作业控制器”用于运行pod运行到完成,例如作为批处理作业的一部分。控制器管理的一组pod由作为控制器定义的一部分的标签选择器确定。

服务

Kubernetes服务是一组协同工作的pod,就像多层架构应用中的一层。构成服务的pod组通过标签选择器来定义。

Kubernetes通过给服务分配静态IP地址和域名来提供服务发现机制,并且以轮询调度的方式将流量负载均衡到能与选择器匹配的podIP地址的网络连接上(即使是故障导致pod从一台机器移动到另一台机器)。默认情况下,一个服务会暴露在集群中(例如,多个后端pod可能被分组成一个服务,前端pod的请求在它们之间负载平衡);但是,一个服务也可以暴露在集群外部(例如,从客户端访问前端pod)。

1.1.5 Kubernetes核心组件

Kubernetes遵循master-slave architectureKubernetes的组件可以分为管理单个的 node 组件和控制平面的一部分的组件。

Kubernetes Master是集群的主要控制单元,用于管理其工作负载并指导整个系统的通信。Kubernetes控制平面由各自的进程组成,每个组件都可以在单个主节点上运行,也可以在支持high-availability clusters的多个主节点上运行。

Kubernetes主要由以下几个核心组件组成:

组件名称

说明

etcd

保存了整个集群的状态;

apiserver

提供了资源操作的唯一入口,并提供认证、授权、访问控制、API注册和发现等机制;

controller manager

负责维护集群的状态,比如故障检测、自动扩展、滚动更新等;

scheduler

负责资源的调度,按照预定的调度策略将Pod调度到相应的机器上;

kubelet

负责维护容器的生命周期,同时也负责VolumeCVI)和网络(CNI)的管理;

Container runtime

负责镜像管理以及Pod和容器的真正运行(CRI);

kube-proxy

负责为Service提供cluster内部的服务发现和负载均衡;

核心组件结构图

 

除了核心组件,还有一些推荐的Add-ons

组件名称

说明

kube-dns

负责为整个集群提供DNS服务

Ingress Controller

为服务提供外网入口

Heapster

提供资源监控

Dashboard

提供GUI

Federation

提供跨可用区的集群

Fluentd-elasticsearch

提供集群日志采集、存储与查询

1.1.6 分层架构

Kubernetes设计理念和功能其实就是一个类似Linux的分层架构,如下图所示:

 

分层说明:

分层结构

说明

核心层

Kubernetes最核心的功能,对外提供API构建高层的应用,对内提供插件式应用执行环境

应用层

部署(无状态应用、有状态应用、批处理任务、集群应用等)和路由(服务发现、DNS解析等)

管理层

系统度量(如基础设施、容器和网络的度量),自动化(如自动扩展、动态Provision等)以及策略管理(RBACQuotaPSPNetworkPolicy等)

接口层

kubectl命令行工具、客户端SDK以及集群联邦

生态系统

在接口层之上的庞大容器集群管理调度的生态系统,可以划分为两个范畴

Kubernetes外部

日志、监控、配置管理、CICDWorkflowFaaSOTS应用、ChatOps

Kubernetes内部

CRICNICVI、镜像仓库、Cloud Provider、集群自身的配置和管理等

1.2 部署Kubernetes集群

1.2.1 主机环境说明

系统版本说明

[root@k8s-master ~]# cat /etc/redhat-release 
CentOS Linux release 7.2.1511 (Core) 
[root@k8s-master ~]# uname -r 
3.10.0-327.el7.x86_64
[root@k8s-master ~]# getenforce 
Disabled
[root@k8s-master ~]# systemctl status  firewalld.service 
● firewalld.service - firewalld - dynamic firewall daemon
   Loaded: loaded (/usr/lib/systemd/system/firewalld.service; disabled; vendor preset: enabled)
   Active: inactive (dead)

主机IP规划

主机名

IP

功能

k8s-master

10.0.0.11/172.16.1.11

Masteretcdregistry

k8s-node-1

10.0.0.12/172.16.1.12

node1

k8s-node-2

10.0.0.13/172.16.1.13

node2

设置hosts解析

[root@k8s-master ~]# cat /etc/hosts
127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
::1         localhost localhost.localdomain localhost6 localhost6.localdomain6
10.0.0.11   k8s-master
10.0.0.12   k8s-node-1
10.0.0.13   k8s-node-2

1.2.2 安装软件包

在三个节点上分别操作

[root@k8s-master ~]# yum install etcd docker kubernetes flannel  -y 
[root@k8s-node-1 ~]# yum install docker kubernetes flannel  -y 
[root@k8s-node-2 ~]# yum install docker kubernetes flannel  -y

安装的软件版本说明

[root@k8s-master ~]# rpm -qa  etcd docker kubernetes flannel
flannel-0.7.1-2.el7.x86_64
docker-1.12.6-71.git3e8e77d.el7.centos.1.x86_64
kubernetes-1.5.2-0.7.git269f928.el7.x86_64
etcd-3.2.11-1.el7.x86_64

1.2.3 修改配置etcd

   yum安装的etcd默认配置文件在/etc/etcd/etcd.conf

最终配置文件

[root@k8s-master ~]# grep -Ev '^$|#' /etc/etcd/etcd.conf
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_CLIENT_URLS="http://0.0.0.0:2379"
ETCD_NAME="default"
ETCD_ADVERTISE_CLIENT_URLS="http://10.0.0.11:2379"

启动etcd

[root@k8s-master ~]# systemctl enable etcd
[root@k8s-master ~]# systemctl start etcd

测试etcd

etcdctl set testdir/testkey0 0
etcdctl set testdir/testkey0 0
[root@k8s-master ~]# etcdctl -C http://10.0.0.11:2379 cluster-health
member 8e9e05c52164694d is healthy: got healthy result from http://10.0.0.11:2379
cluster is healthy

1.2.4 配置并启动kubernetes

/etc/kubernetes/apiserver配置文件内容

[root@k8s-master ~]#  grep -Ev '^$|#'  /etc/kubernetes/apiserver
KUBE_API_ADDRESS="--insecure-bind-address=0.0.0.0"
KUBE_API_PORT="--port=8080"
KUBE_ETCD_SERVERS="--etcd-servers=http://10.0.0.11:2379"
KUBE_SERVICE_ADDRESSES="--service-cluster-ip-range=10.254.0.0/16"
KUBE_ADMISSION_CONTROL="--admission-control=NamespaceLifecycle,NamespaceExists,LimitRanger,SecurityContextDeny,ResourceQuota"
KUBE_API_ARGS=""

/etc/kubernetes/config配置文件

[root@k8s-master ~]#  grep -Ev '^$|#' /etc/kubernetes/config
KUBE_LOGTOSTDERR="--logtostderr=true"
KUBE_LOG_LEVEL="--v=0"
KUBE_ALLOW_PRIV="--allow-privileged=false"
KUBE_MASTER="--master=http://10.0.0.11:8080"

启动服务

systemctl enable kube-apiserver.service
systemctl start kube-apiserver.service
systemctl enable kube-controller-manager.service
systemctl start kube-controller-manager.service
systemctl enable kube-scheduler.service
systemctl start kube-scheduler.service

1.2.5 部署配置node

/etc/kubernetes/config配置文件

[root@k8s-node-1 ~]# grep -Ev '^$|#'  /etc/kubernetes/config
KUBE_LOGTOSTDERR="--logtostderr=true"
KUBE_LOG_LEVEL="--v=0"
KUBE_ALLOW_PRIV="--allow-privileged=false"
KUBE_MASTER="--master=http://10.0.0.11:8080"
[root@k8s-node-1 ~]# grep -Ev '^$|#'  /etc/kubernetes/kubelet
KUBELET_ADDRESS="--address=0.0.0.0"
KUBELET_HOSTNAME="--hostname-override=10.0.0.12"
KUBELET_API_SERVER="--api-servers=http://10.0.0.11:8080"
KUBELET_POD_INFRA_CONTAINER="--pod-infra-container-image=registry.access.redhat.com/rhel7/pod-infrastructure:latest"
KUBELET_ARGS=""

/etc/kubernetes/config配置文件

[root@k8s-node-2 ~]# grep -Ev '^$|#'  /etc/kubernetes/config
KUBE_LOGTOSTDERR="--logtostderr=true"
KUBE_LOG_LEVEL="--v=0"
KUBE_ALLOW_PRIV="--allow-privileged=false"
KUBE_MASTER="--master=http://10.0.0.11:8080"
[root@k8s-node-2 ~]# grep -Ev '^$|#'  /etc/kubernetes/kubelet
KUBELET_ADDRESS="--address=0.0.0.0"
KUBELET_HOSTNAME="--hostname-override=10.0.0.13"
KUBELET_API_SERVER="--api-servers=http://10.0.0.11:8080"
KUBELET_POD_INFRA_CONTAINER="--pod-infra-container-image=registry.access.redhat.com/rhel7/pod-infrastructure:latest"
KUBELET_ARGS=""

启动

systemctl enable kubelet.service
systemctl start kubelet.service
systemctl enable kube-proxy.service
systemctl start kube-proxy.service

master上查看集群中节点及节点状态

# kubectl -s http://10.0.0.11:8080 get node
[root@k8s-master ~]# kubectl -s http://10.0.0.11:8080 get node
NAME        STATUS    AGE
10.0.0.12   Ready     49s
10.0.0.13   Ready     56s
[root@k8s-master ~]# kubectl get nodes
NAME        STATUS    AGE
10.0.0.12   Ready     1m
10.0.0.13   Ready     1m

   至此Kubernetes基础部署完成

1.2.6 Kubernetes其他安装方法

    二进制安装

     kubuadm 安装

     minikube 安装

     ansible部署:https://github.com/gjmzj/kubeasz

1.3 创建覆盖网络--Flannel

1.3.1 配置Flannel(所有节点操作)

安装软件包

yum install flannel -y

修改配置文件

[root@k8s-master ~]# grep "^[a-Z]" /etc/sysconfig/flanneld
FLANNEL_ETCD_ENDPOINTS="http://10.0.0.11:2379"
FLANNEL_ETCD_PREFIX="/atomic.io/network"

1.3.2 配置etcd中关于flannelkey

Flannel使用Etcd进行配置,来保证多个Flannel实例之间的配置一致性,所以需要在etcd上进行如下配置:(‘/atomic.io/network/config’这个key与上文/etc/sysconfig/flannel中的配置项FLANNEL_ETCD_PREFIX是相对应的,错误的话启动就会出错)

配置网络范围

etcdctl mk  /atomic.io/network/config '{ "Network": "172.16.0.0/16" }'

操作创建网络

[root@k8s-master ~]# etcdctl mk /atomic.io/network/config '{ "Network": "172.16.0.0/16" }'
{ "Network": "172.16.0.0/16" }

master节点操作

    systemctl enable flanneld.service 
    systemctl start flanneld.service 
    service docker restart
    systemctl restart kube-apiserver.service
    systemctl restart kube-controller-manager.service
    systemctl restart kube-scheduler.service

node节点操作

    systemctl enable flanneld.service 
    systemctl start flanneld.service 
    service docker restart
    systemctl restart kubelet.service
    systemctl restart kube-proxy.service 
    

修改配置文件

[root@k8s-master ~]# cat  /etc/kubernetes/apiserver 
KUBE_API_ADDRESS="--insecure-bind-address=0.0.0.0"
KUBE_API_PORT="--port=8080"
KUBE_ETCD_SERVERS="--etcd-servers=http://10.0.0.11:2379"
KUBE_SERVICE_ADDRESSES="--service-cluster-ip-range=10.254.0.0/16"
KUBE_ADMISSION_CONTROL="--admission-control=NamespaceLifecycle,NamespaceExists,LimitRanger,SecurityContextDeny,ResourceQuota"
KUBE_API_ARGS=""

   至此Flannel网络配置完成

1.4 创建一个简单的pod

PodK8s集群中所有业务类型的基础

Pod是在K8s集群中运行部署应用或服务的最小单元,它是可以支持多容器的。

Pod的设计理念是支持多个容器在一个Pod中共享网络地址和文件系统。

POD控制器DeploymentJobDaemonSetPetSet

1.4.1 写一个编排yaml格式

kubenetes里面的创建servicercpod都是这种形式(另外一种是json)

关于yaml参考:http://t.cn/RK0Jlwu

[root@k8s-master ~]# cat  /etc/kubernetes/apiserver 
KUBE_API_ADDRESS="--insecure-bind-address=0.0.0.0"
KUBE_API_PORT="--port=8080"
KUBE_ETCD_SERVERS="--etcd-servers=http://10.0.0.11:2379"
KUBE_SERVICE_ADDRESSES="--service-cluster-ip-range=10.254.0.0/16"
KUBE_ADMISSION_CONTROL="--admission-control=NamespaceLifecycle,NamespaceExists,LimitRanger,SecurityContextDeny,ResourceQuota"
KUBE_API_ARGS=""

1.4.2 启动一个pod

[root@k8s-master ~]# kubectl create -f hello.yaml 
pod "hello-world" created

查看默认namespace下的pods

[root@k8s-master ~]# kubectl get pods
NAME          READY     STATUS              RESTARTS   AGE
hello-world   0/1       ContainerCreating   0          8s

查看pod的详细信息

[root@k8s-master ~]# kubectl  describe pod  hello-world 
Events:
  FirstSeen    LastSeen    Count    From            SubObjectPath    Type       Reason        Message
  ---------    --------    -----    ----            -------------    --------   ------        -------
  4m        4m        1    {default-scheduler}      Normal         Scheduled    Successfully assigned hello-world to 10.0.0.13
  4m        1m        5    {kubelet 10.0.0.13}      Warning        FailedSync    Error syncing pod, skipping: failed to "StartContainer" for "POD" with ErrImagePull: "image pull failed for registry.access.redhat.com/rhel7/pod-infrastructure:latest, this may be because there are no credentials on this request.  details: (open /etc/docker/certs.d/registry.access.redhat.com/redhat-ca.crt: no such file or directory)"
  3m        14s       13   {kubelet 10.0.0.13}      Warning        FailedSync    Error syncing pod, skipping: failed to "StartContainer" for "POD" with ImagePullBackOff: "Back-off pulling image \"registry.access.redhat.com/rhel7/pod-infrastructure:latest\""

   该错误的解决方法: yum install python-rhsm* -y 

获取指定pods详细信息

kubectl describe pods yourpodname

获取已运行pod状态

kubectl get pods -o wide

下载pod-infrastructure镜像包

docker tag docker.io/tianyebj/pod-infrastructure:latest registry.access.redhat.com/rhel7/pod-infrastructure:lates

1.4.3 pod其他操作

删除pod,重新创建

[root@k8s-master ~]# kubectl delete -f hello.yaml 
pod "hello-world" deleted
[root@k8s-master ~]# kubectl create -f hello.yaml 
pod "hello-world" created

查看状态

[root@k8s-master ~]# kubectl get pods -o wide
NAME        READY     STATUS             RESTARTS   AGE       IP            NODE
nginx-web   1/1       ImagePullBackOff   0          1m        172.16.53.2   10.0.0.13

1.5 Replication Controller

   RCK8s集群中最早的保证Pod高可用的API对象。通过监控运行中的Pod来保证集群中运行指定数目的Pod副本。指定的数目可以是多个也可以是1个;少于指定数目,RC就会启动运行新的Pod副本;多于指定数目,RC就会杀死多余的Pod副本。

   即使在指定数目为1的情况下,通过RC运行Pod也比直接运行Pod更明智,因为RC也可以发挥它高可用的能力,保证永远有1Pod在运行。

1.5.1 简单rc配置

[root@k8s-master ~]# kubectl get  rc

始终保证有一个在活着

更新rc文件

[root@k8s-master ~]# kubectl replace -f  nginx.yml

   nginx.yml文件信息

[root@k8s-master ~]# vim nginx.yml
apiVersion: v1
kind: Pod
metadata:
  name: nginx-2
spec:
  restartPolicy: Never
  containers:
  - name: nginx
    image: "docker.io/nginx:latest"

对现有已创建资源直进行修改

[root@k8s-master ~]# kubectl edit rc nginx

   可以调整数量即使生效

1.5.2 rs实现灰度发布

RS是新一代RC,提供同样的高可用能力,区别主要在于RS后来居上,能支持更多中的匹配模式。副本集对象一般不单独使用,而是作为部署的理想状态参数使用。

K8S 1.2中出现的概念,是RC的升级。一般和Deployment共同使用。

 部署表示用户对K8s集群的一次更新操作。部署是一个比RS应用模式更广的API对象,可以是创建一个新的服务,更新一个新的服务,也可以是滚动升级一个服务。滚动升级一个服务,实际是创建一个新的RS,然后逐渐将新RS中副本数增加到理想状态,将旧RS中的副本数减小到0的复合操作;

   这样一个复合操作用一个RS是不太好描述的,所以用一个更通用的Deployment来描述。

  以K8s的发展方向,未来对所有长期伺服型的的业务的管理,都会通过Deployment来管理。

   Deployment是对RC的升级,与RC的相似度超过90%。

web-rc.yaml文件内容

[root@k8s-master ~]# cat web-rc.yaml 
apiVersion: v1
kind: ReplicationController
metadata:
  name: myweb
spec:
  replicas: 3
  selector:
    app: myweb
  template:
    metadata:
      labels:
        app: myweb
    spec:
      containers:
      - name: myweb
        image: kubeguide/tomcat-app:v1
        ports:
        - containerPort: 8080
        env:
        - name: MYSQL_SERVICE_HOST
          value: 'mysql'
        - name: MYSQL_SERVICE_PORT
          value: '3306'

创建集群

[root@k8s-master ~]# kubectl create -f web-rc.yaml

对集群进行升级操作

   将集群内容器自动升级到新版本的容器

[root@k8s-master ~]# kubectl rolling-update  myweb  -f web-rc2.yaml 

web-rc2.yaml配置文件内容

[root@k8s-master ~]# cat web-rc2.yaml 
apiVersion: v1
kind: ReplicationController
metadata:
  name: myweb-2
spec:
  replicas: 3
  selector:
    app: myweb-2
  template:
    metadata:
      labels:
        app: myweb-2
    spec:
      containers:
      - name: myweb-2
        image: kubeguide/tomcat-app:v2
        ports:
        - containerPort: 8080
        env:
        - name: MYSQL_SERVICE_HOST
          value: 'mysql'
        - name: MYSQL_SERVICE_PORT
          value: '3306'

升级后的回滚

   使用新的文件,进行升级操作可达到回滚的目的,参考:https://github.com/kubeguide/samplecode

[root@k8s-master ~]# kubectl rolling-update  myweb-2  -f web-rc.yaml 

1.5.3 rc小结

RC里包括完整的POD定义模板

RC通过Label Selector机制实现对POD副本的自动控制。

通过改变RC里的POD副本以实现POD的扩容和缩容

通过改变RCPOD模块中的镜像版本,可以实现POD的滚动升级。

1.6 服务(Service

1.6.1 Service作用

RCRSDeployment只是保证了支撑服务的POD的数量,但是没有解决如何访问这些服务的问题。一个Pod只是一个运行服务的实例,随时可能在一个节点上停止,在另一个节点以一个新的IP启动一个新的Pod,因此不能以确定的IP和端口号提供服务。

要稳定地提供服务需要服务发现和负载均衡能力。服务发现完成的工作,是针对客户端访问的服务,找到对应的的后端服务实例。

K8集群中,客户端需要访问的服务就是Service对象。每个Service会对应一个集群内部有效的虚拟IP,集群内部通过虚拟IP访问一个服务。

K8s集群中微服务的负载均衡是由Kube-proxy实现的。Kube-proxyK8s集群内部的负载均衡器。它是一个分布式代理服务器,在K8s的每个节点上都有一个;这一设计体现了它的伸缩性优势,需要访问服务的节点越多,提供负载均衡能力的Kube-proxy就越多,高可用节点也随之增多。

1.6.2 测试service

[root@k8s-master ~]# vim myweb-svc.yaml 
apiVersion: v1
kind: Service
metadata:
  name: myweb
spec:
  type: NodePort
  ports:
    - port: 8080
      nodePort: 30001
  selector:
    app: myweb

启动集群

[root@k8s-master ~]# kubectl create -f myweb-svc.yaml 
service "myweb" created
[root@k8s-master ~]# kubectl get svc
NAME         CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
kubernetes   10.254.0.1      <none>        443/TCP          6h
myweb        10.254.247.21   <nodes>       8080:30001/TCP   12s

浏览器访问测试

 

1.6.3 service原理图

 

网访问node ip 转到cluster ip 在进行pod 分发  rr轮询

kubectl create -f web-svc.yaml
    [root@k8s-master ~]# kubectl get service
    
    NAME         CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
    kubernetes   10.254.0.1      <none>        443/TCP          4h
    myweb        10.254.168.71   <nodes>       8080:30001/TCP   15s

1.6.4 K8S三种IP

类型

说明

Node IP

节点设备的IP,如物理机,虚拟机等容器宿主的实际IP

Pod IP

Pod IP地址,是根据docker0网格IP段进行分配的。

Cluster IP

 ServiceIP,是一个虚拟IP,仅作用于service对象,由k8s管理和分配,需要结合service port才能使用,单独的IP没有通信功能,集群外访问需要一些修改。

1.7 部署DashBoard

参考文档:http://www.cnblogs.com/zhenyuyaodidiao/p/6500897.html

1.7.1 修改配置文件

编辑dashboard.yaml,注意或更改以下部分:

    image: index.tenxcloud.com/google_containers/kubernetes-dashboard-amd64:v1.4.1
            args:
         -  --apiserver-host=http://10.0.0.11:8080

编辑dashboardsvc.yaml文件:

apiVersion: v1
kind: Service
metadata:
  name: kubernetes-dashboard
  namespace: kube-system
  labels:
    k8s-app: kubernetes-dashboard
    kubernetes.io/cluster-service: "true"
spec:
  selector:
    k8s-app: kubernetes-dashboard
  ports:
  - port: 80
targetPort: 9090

1.7.2 镜像准备

在dashboard.yaml中定义了dashboard所用的镜像

gcr.io/google_containers/kubernetes-dashboard-amd64:v1.5.1(当然你可以选择其他的版本)

下载地址

docker pull registry.cn-hangzhou.aliyuncs.com/google-containers/kubernetes-dashboard-amd64:v1.4.1

1.7.3 启动dashboard

master执行如下命令:

kubectl create -f dashboard.yaml
kubectl create -f dashboardsvc.yaml

到此dashboard搭建完成

1.7.4 验证

  命令验证,master上执行如下命令:

[root@k8s-master ~]# kubectl get deployment --all-namespaces
NAMESPACE     NAME                          DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
kube-system   kubernetes-dashboard-latest   1         1         1            1           42m
[root@k8s-master ~]# kubectl get svc  --all-namespaces
NAMESPACE     NAME                   CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
default       kubernetes             10.254.0.1      <none>        443/TCP          5h
default       myweb                  10.254.168.71   <nodes>       8080:30001/TCP   1h
kube-system   kubernetes-dashboard   10.254.90.78    <none>        80/TCP           41m
    [root@k8s-master ~]# kubectl get pod  -o wide  --all-namespaces
    NAMESPACE     NAME                                           READY     STATUS    RESTARTS   AGE       IP            NODE
    default       myweb-c2dfj                                    1/1       Running   0          1h        172.16.57.2   10.0.0.13
    default       myweb-h7rkb                                    1/1       Running   0          1h        172.16.76.2   10.0.0.12
    default       myweb-l48b3                                    1/1       Running   0          1h        172.16.57.3   10.0.0.13
    kube-system   kubernetes-dashboard-latest-1395490986-1t37v   1/1       Running   0          43m       172.16.76.3   10.0.0.12

1.7.5 浏览器访问:http://10.0.0.11:8080/ui

 

1.7.6 销毁应用(测试)

master上执行:

kubectl delete deployment kubernetes-dashboard-latest --namespace=kube-system
kubectl delete svc  kubernetes-dashboard --namespace=kube-system

1.8 参考文献

 [1] http://docs.kubernetes.org.cn/227.html

 [2] http://www.cnblogs.com/zhenyuyaodidiao/p/6500830.html

作者: 惨绿少年
出处: https://www.nmtui.com
本文版权归作者所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
3月前
|
Kubernetes 负载均衡 微服务
Kubernetes 生态系统中的微服务治理
【8月更文第29天】随着微服务架构的普及,管理分布式系统的复杂性也随之增加。Kubernetes 作为容器编排的事实标准,为微服务架构提供了强大的支持。结合像 Istio 这样的服务网格工具,Kubernetes 能够有效地解决微服务治理中的诸多挑战,如服务发现、负载均衡、流量管理和安全策略等。
56 1
|
1月前
|
Kubernetes 监控 测试技术
k8s学习--基于Ingress-nginx实现灰度发布系统
k8s学习--基于Ingress-nginx实现灰度发布系统
100 2
k8s学习--基于Ingress-nginx实现灰度发布系统
|
7天前
|
Kubernetes 负载均衡 调度
Kubernetes集群管理与编排实践
Kubernetes集群管理与编排实践
|
3月前
|
存储 Kubernetes API
Kubernetes系统
8月更文挑战第23天
46 1
|
3月前
|
资源调度 Kubernetes 调度
玩转Kubernetes集群:掌握节点和Pod自动扩缩容,让你的系统更智能、更高效!
【8月更文挑战第22天】Kubernetes的核心功能之一是自动扩缩容,确保系统稳定与高可用。节点自动扩缩容由调度器和控制器管理器协作完成,依据资源紧张程度动态调整。主要采用HPA、VPA及Cluster Autoscaler实现。Pod自动扩缩容通常通过HPA控制器按需调整副本数量。例如,设置HPA控制器监视特定部署的CPU使用率,在80%阈值上下自动增减副本数。合理利用这些工具可显著提升系统性能。
100 2
|
3月前
|
存储 Kubernetes API
|
3月前
|
存储 Kubernetes 调度
通过重新构建Kubernetes来实现更具弹性的容器编排系统
通过重新构建Kubernetes来实现更具弹性的容器编排系统
60 8
|
4月前
|
Kubernetes 持续交付 Python
Kubernetes(通常简称为K8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。
Kubernetes(通常简称为K8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。
|
3月前
|
存储 Kubernetes API
K8S集群管理:用名字空间分隔系统资源
【8月更文挑战第12天】Kubernetes的名字空间是一种逻辑概念,用于将集群分割成多个独立区域,实现资源隔离,避免不同应用间的干扰。
|
6月前
|
运维 Kubernetes 监控
构建高效自动化运维系统:基于Docker和Kubernetes的实践
【5月更文挑战第28天】在现代云计算环境中,自动化运维已成为提升服务效率、减少人为错误和应对快速变化需求的关键。本文以实际案例为依托,详细探讨了如何利用Docker容器化技术和Kubernetes集群管理系统搭建一套高效的自动化运维平台。通过深入分析Docker的轻量级虚拟化特性及Kubernetes的编排能力,本文展示了从基础设施搭建到持续集成、部署和监控的全自动化流程,旨在为运维工程师提供一种提高生产力、降低运营成本的可行解决方案。