Linux内核协议栈-从BSD socket接口层到传输层1

简介:

本文接上一篇Linux内核协议栈-初始化流程分析,在上一篇中主要分析了了Linux内核协议栈涉及到的关键初始化函数,在这一篇文章中将分析协议栈的BSD socket和到传输层的流程。采取的方式是分析socket相关的主要系统调用。针对不同的系统调用,其到达的协议层深度可能不同,有的基本只到sock层就够了,但是有些可能需要会涉及到比如tcp的具体细节和更底层的细节。本文基本追溯到传输层的开始,再深入的细节后续文章分析。


1.准备
协议的基本分层:
(A代表socket的某个系统调用)
BSD socket system calls A => proto_ops->A => sock->A => tcp_prot => A

  • BSD socket层和具体协议族某个类型的联系是通过struct proto_ops,在include/linux/net.h中定义了不同协议族如af_inet,af_unix等的通用操作函数指针的结构体struct proto_ops,具体的定义有各个协议族的某个类型的子模块自己完成。比如ipv4/af_inet.c中定义的af_inet family的tcp/udp等相应的struct proto_ops。
  • 由于对于每个family的不同类型,其针对socket的某些需求可能不同,所以抽了一层struct sock出来,sock->sk_prot挂接到具体tcp/udp等传输层的struct proto上(具体定义在ipv4/tcp_ipv4.c,ipv4/udp.c)
  • 另外,由于内容比较多,这一篇主要分析socket,bind,listen,accept几个系统调用,下一篇会涉及connect,send,recv等的分析
//不同协议族的通用函数hooks
//比如af_inet相关的定义在ipv4/af_inet.c中
//除了创建socket为系统调用外,基本针对socket层的操作函数都在这里面
struct proto_ops {
    int     family;
    struct module   *owner;
    int     (*release)   (struct socket *sock);
    int     (*bind)      (struct socket *sock,
                      struct sockaddr *myaddr,
                      int sockaddr_len);
    int     (*connect)   (struct socket *sock,
                      struct sockaddr *vaddr,
                      int sockaddr_len, int flags);
    int     (*socketpair)(struct socket *sock1,
                      struct socket *sock2);
    int     (*accept)    (struct socket *sock,
                      struct socket *newsock, int flags);
    int     (*getname)   (struct socket *sock,
                      struct sockaddr *addr,
                      int *sockaddr_len, int peer);
    unsigned int    (*poll)      (struct file *file, struct socket *sock,
                      struct poll_table_struct *wait);
    int     (*ioctl)     (struct socket *sock, unsigned int cmd,
                      unsigned long arg);
#ifdef CONFIG_COMPAT
    int     (*compat_ioctl) (struct socket *sock, unsigned int cmd,
                      unsigned long arg);
#endif
    int     (*listen)    (struct socket *sock, int len);
    int     (*shutdown)  (struct socket *sock, int flags);
    int     (*setsockopt)(struct socket *sock, int level,
                      int optname, char __user *optval, unsigned int optlen);
/*省略部分*/
};
//传输层的proto 
//作为sock->sk_prot与具体传输层的hooks
struct proto {
    void            (*close)(struct sock *sk,
                    long timeout);
    int         (*connect)(struct sock *sk,
                    struct sockaddr *uaddr,
                    int addr_len);
    int         (*disconnect)(struct sock *sk, int flags);

    struct sock *       (*accept)(struct sock *sk, int flags, int *err);

    int         (*ioctl)(struct sock *sk, int cmd,
                     unsigned long arg);
    int         (*init)(struct sock *sk);
    void            (*destroy)(struct sock *sk);
    void            (*shutdown)(struct sock *sk, int how);
    int         (*setsockopt)(struct sock *sk, int level,
                    int optname, char __user *optval,
                    unsigned int optlen);
    int         (*getsockopt)(struct sock *sk, int level,
                    int optname, char __user *optval,
                    int __user *option);
#ifdef CONFIG_COMPAT
    int         (*compat_setsockopt)(struct sock *sk,
                    int level,
                    int optname, char __user *optval,
                    unsigned int optlen);
    int         (*compat_getsockopt)(struct sock *sk,
                    int level,
                    int optname, char __user *optval,
                    int __user *option);
    int         (*compat_ioctl)(struct sock *sk,
                    unsigned int cmd, unsigned long arg);
#endif
    int         (*sendmsg)(struct kiocb *iocb, struct sock *sk,
                       struct msghdr *msg, size_t len);
    int         (*recvmsg)(struct kiocb *iocb, struct sock *sk,
                       struct msghdr *msg,
                       size_t len, int noblock, int flags,
                       int *addr_len);
    int         (*sendpage)(struct sock *sk, struct page *page,
                    int offset, size_t size, int flags);
    int         (*bind)(struct sock *sk,
                    struct sockaddr *uaddr, int addr_len);

    /*省略部分*/
};

同时附上其他几个关键结构体:

//bsd socket层
//include/linux/net.h
struct socket {
    socket_state        state;
    kmemcheck_bitfield_begin(type);
    short           type;
    kmemcheck_bitfield_end(type);
    unsigned long       flags;
    struct socket_wq __rcu  *wq;
    struct file     *file;
    struct sock     *sk;
    const struct proto_ops  *ops;
};
//sock层
struct sock {
 sock_common    __sk_common;
#define sk_node         __sk_common.skc_node
#define sk_nulls_node       __sk_common.skc_nulls_node
#define sk_refcnt       __sk_common.skc_refcnt
#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
#define sk_dontcopy_begin   __sk_common.skc_dontcopy_begin
#define sk_dontcopy_end     __sk_common.skc_dontcopy_end
#define sk_hash         __sk_common.skc_hash
#define sk_portpair     __sk_common.skc_portpair
#define sk_num          __sk_common.skc_num
#define sk_dport        __sk_common.skc_dport
#define sk_addrpair     __sk_common.skc_addrpair
#define sk_daddr        __sk_common.skc_daddr
#define sk_rcv_saddr        __sk_common.skc_rcv_saddr
#define sk_family       __sk_common.skc_family
#define sk_state        __sk_common.skc_state
#define sk_reuse        __sk_common.skc_reuse
#define sk_reuseport        __sk_common.skc_reuseport
#define sk_ipv6only     __sk_common.skc_ipv6only
#define sk_bound_dev_if     __sk_common.skc_bound_dev_if
#define sk_bind_node        __sk_common.skc_bind_node
#define sk_prot         __sk_common.skc_prot
#define sk_net          __sk_common.skc_net
#define sk_v6_daddr     __sk_common.skc_v6_daddr
#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr

    unsigned long       sk_flags;
    struct dst_entry    *sk_rx_dst;
    struct dst_entry __rcu  *sk_dst_cache;
    spinlock_t      sk_dst_lock;
    atomic_t        sk_wmem_alloc;
    atomic_t        sk_omem_alloc;
    int         sk_sndbuf;
    struct sk_buff_head sk_write_queue;
    /*省略部分*/
    struct pid      *sk_peer_pid;
    const struct cred   *sk_peer_cred;
    long            sk_rcvtimeo;
    long            sk_sndtimeo;
    void            *sk_protinfo;
    struct timer_list   sk_timer;
    ktime_t         sk_stamp;
    u16         sk_tsflags;
    u32         sk_tskey;
    struct socket       *sk_socket;
    void            *sk_user_data;
    struct page_frag    sk_frag;
    struct sk_buff      *sk_send_head;
    /*省略部分*/
};

2.开始
主要追溯几个典型的socket相关的系统调用,如socket,bind,listen,accept等等

  • socket
//创建socket的系统调用
SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
{
    int retval;
    struct socket *sock;
    int flags;

    /* Check the SOCK_* constants for consistency.  */
    BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
    BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
    BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
    BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);

    flags = type & ~SOCK_TYPE_MASK;
    if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
        return -EINVAL;
    type &= SOCK_TYPE_MASK;

    if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
        flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;

    //分配inode,返回inode中的一个成员作为sock
    retval = sock_create(family, type, protocol, &sock);
    if (retval < 0)
        goto out;

    //找个fd映射sock
    //得到空fd
    //分配伪dentry和file,并将socket file的operations与file挂接 
    retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
/*省略部分*/
}
  • socketpair
//创建socketpair,注意af_inet协议族下没有pair,af_unix下有
SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
        int __user *, usockvec)
{
    struct socket *sock1, *sock2;
    int fd1, fd2, err;
    struct file *newfile1, *newfile2;
    int flags;

    flags = type & ~SOCK_TYPE_MASK;
    if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
        return -EINVAL;
    type &= SOCK_TYPE_MASK;

    if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
        flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;

    //创建socket1 
    err = sock_create(family, type, protocol, &sock1);
    if (err < 0)
        goto out;

    //创建socket2
    err = sock_create(family, type, protocol, &sock2);
    if (err < 0)
        goto out_release_1;

    //调用socket operations的socketpair 
    //关于不同协议层的函数hook,公共结构体是struct proto_ops 
    //对于不同的family,比如af_inet协议族的定义在ipv4/af_inet.c
    //
    //对于af_inet没有socketpair 
    //对于af_unix有socketpair
    err = sock1->ops->socketpair(sock1, sock2);
    if (err < 0)
        goto out_release_both;

    //后面部分就很类似了,找到空fd,分配file,绑定到socket,将file
    安装到当前进程
    fd1 = get_unused_fd_flags(flags);
    if (unlikely(fd1 < 0)) {
        err = fd1;
        goto out_release_both;
    }

    fd2 = get_unused_fd_flags(flags);
    if (unlikely(fd2 < 0)) {
        err = fd2;
        goto out_put_unused_1;
    }

    newfile1 = sock_alloc_file(sock1, flags, NULL);
    if (unlikely(IS_ERR(newfile1))) {
        err = PTR_ERR(newfile1);
        goto out_put_unused_both;
    }

    newfile2 = sock_alloc_file(sock2, flags, NULL);
    if (IS_ERR(newfile2)) {
        err = PTR_ERR(newfile2);
        goto out_fput_1;
    }

    err = put_user(fd1, &usockvec[0]);
    if (err)
        goto out_fput_both;

    err = put_user(fd2, &usockvec[1]);
    if (err)
        goto out_fput_both;

    audit_fd_pair(fd1, fd2);

    fd_install(fd1, newfile1);
    fd_install(fd2, newfile2);
    /* fd1 and fd2 may be already another descriptors.
     * Not kernel problem.
     */
    return 0;
  • bind
SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
{
    struct socket *sock;
    struct sockaddr_storage address;
    int err, fput_needed;
    //根据fd查找file,进而查找socket指针sock
    sock = sockfd_lookup_light(fd, &err, &fput_needed);
    if (sock) {
        //把用户态地址数据移到内核态
        //调用copy_from_user 
        err = move_addr_to_kernel(umyaddr, addrlen, &address);
        if (err >= 0) {
            //security hook
            err = security_socket_bind(sock,
                           (struct sockaddr *)&address,
                           addrlen);
            if (!err)
                //ok, 到具体family定义的proto_ops中的bind 
                //比如对af_inet,主要是设置socket->sock->inet_sock的一些参数,比如接收地址,端口什么的
                err = sock->ops->bind(sock,
                              (struct sockaddr *)
                              &address, addrlen);
        }
        fput_light(sock->file, fput_needed);
    }
    return err;
}
  • listen
    listen所做的事情也比较简单,从系统调用的listen(fd, backlog)到proto_ops 的inet_listen与前面类似,这里分析下inet_listen中的核心函数inet_csk_listen_start(位于ipv4/inet_connection_sock.c中)。
int inet_csk_listen_start(struct sock *sk, const int nr_table_entries)
{
    //获得网络层inte_sock 
    struct inet_sock *inet = inet_sk(sk);
    //管理request connection的结构体  
    struct inet_connection_sock *icsk = inet_csk(sk);
    //分配backlog个长度的accpet_queue的结构连接请求的队列
    int rc = reqsk_queue_alloc(&icsk->icsk_accept_queue, nr_table_entries);

    if (rc != 0)
        return rc;

    sk->sk_max_ack_backlog = 0;
    sk->sk_ack_backlog = 0;
    inet_csk_delack_init(sk);

    /* There is race window here: we announce ourselves listening,
     * but this transition is still not validated by get_port().
     * It is OK, because this socket enters to hash table only
     * after validation is complete.
     */
    //切换状态到listening 
    sk->sk_state = TCP_LISTEN;
    if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
        inet->inet_sport = htons(inet->inet_num);
        //更新dst_entry表
        sk_dst_reset(sk);
        sk->sk_prot->hash(sk);

        return 0;
    }
    sk->sk_state = TCP_CLOSE;
    __reqsk_queue_destroy(&icsk->icsk_accept_queue);
    return -EADDRINUSE;
}
  • accept
    上面socket, socketpair, bind基本只涉及到BSD socket, sock层相关的,过程比较简单,而accept层在sock层和tcp层交互稍微复杂,下面详细分析
//socket.c
//accept系统调用
SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
        int __user *, upeer_addrlen, int, flags)
{
    /*省略部分*/
    err = -ENFILE;
    //for client socket 
    newsock = sock_alloc();
    if (!newsock)
        goto out_put;

    newsock->type = sock->type;
    newsock->ops = sock->ops;

    /*
     * We don't need try_module_get here, as the listening socket (sock)
     * has the protocol module (sock->ops->owner) held.
     */
    __module_get(newsock->ops->owner);

    //得到当前进程空fd,分给newsock file
    newfd = get_unused_fd_flags(flags);
    if (unlikely(newfd < 0)) {
        err = newfd;
        sock_release(newsock);
        goto out_put;
    }
    //从flab分配空file结构
    newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
    if (unlikely(IS_ERR(newfile))) {
        err = PTR_ERR(newfile);
        put_unused_fd(newfd);
        sock_release(newsock);
        goto out_put;
    }

    err = security_socket_accept(sock, newsock);
    if (err)
        goto out_fd;

    //proto_ops中的accept 
    //accept从系统调用到具体协议族的某个type的struct proto_ops的accept如af_inet tcp的的accept,再到sock层的accept,然后sock层的accept实际上对应的是具体传输层的struct proto中的accpet,如tcp/udp的struct proto tcp_prot/udp_prot,然后放入newsock 
    err = sock->ops->accept(sock, newsock, sock->file->f_flags);
    if (err < 0)
        goto out_fd;

    if (upeer_sockaddr) {
        if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
                      &len, 2) < 0) {
            err = -ECONNABORTED;
            goto out_fd;
        }
        //拷贝client socket addr storage到userspace
        err = move_addr_to_user(&address,
                    len, upeer_sockaddr, upeer_addrlen);
        if (err < 0)
            goto out_fd;
    }
    fd_install(newfd, newfile);
    err = newfd;
    /*省略部分*/

}
//ipv4/af_inet.c
//inet family的tcp相关的proto_ops
int inet_accept(struct socket *sock, struct socket *newsock, int flags)
{
    struct sock *sk1 = sock->sk;
    int err = -EINVAL;
    //进入(网络)sock层,accept新sock 
    struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err);
    if (!sk2)
        goto do_err;

    //锁住sock,因为需要操作sock内的request_socket请求队列头
    wait_queue_head_t等数据
    lock_sock(sk2);
    sock_rps_record_flow(sk2);
    WARN_ON(!((1 << sk2->sk_state) &
          (TCPF_ESTABLISHED | TCPF_SYN_RECV |
          TCPF_CLOSE_WAIT | TCPF_CLOSE)));
    sock_graft(sk2, newsock);
    //设置client socket状态 
    newsock->state = SS_CONNECTED;
    err = 0;
    release_sock(sk2);
do_err:
    return err;
}
//ipv4/tcp_ipv4.c
//这里进入struct proto tcp_prot中的accept
struct sock *inet_csk_accept(struct sock *sk, int flags, int *err)
{
    struct inet_connection_sock *icsk = inet_csk(sk);
    //icsk : inet_connection_sock 面向连接的客户端连接处理相关的信息
    //接收队列
    struct request_sock_queue *queue = &icsk->icsk_accept_queue;
    struct sock *newsk;
    struct request_sock *req;
    int error;
    //lock sock
    lock_sock(sk);
    //如果不是ACCPET状态转换过来,出错
    error = -EINVAL;
    if (sk->sk_state != TCP_LISTEN)
        goto out_err;

    //如果request_sock队列是空的, 利用等待队列挂起当前进程到等待队列,并且将等待队列放入sock中的请求队列头
    if (reqsk_queue_empty(queue)) { 
        //如果非阻塞,0,否则为sk的接收时间
        long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
        error = -EAGAIN;
        if (!timeo)   //如果非阻塞而且接收队列是空,直接返回-EAGAIN
            goto out_err;
        //阻塞情况下,等待timeo时间的超时
        //利用了等待队列,下面会详细注解 
        error = inet_csk_wait_for_connect(sk, timeo);
        if (error)
            goto out_err;
    }
    //不是空,移出一个连接请求 
    req = reqsk_queue_remove(queue);
    //连接请求的sock
    newsk = req->sk;
    //减少backlog 
    sk_acceptq_removed(sk);
    //fastopenq?
    if (sk->sk_protocol == IPPROTO_TCP && queue->fastopenq != NULL) {
        spin_lock_bh(&queue->fastopenq->lock);
        if (tcp_rsk(req)->listener) {
            /* We are still waiting for the final ACK from 3WHS
             * so can't free req now. Instead, we set req->sk to
             * NULL to signify that the child socket is taken
             * so reqsk_fastopen_remove() will free the req
             * when 3WHS finishes (or is aborted).
             */
            req->sk = NULL;
            req = NULL;
        }
        spin_unlock_bh(&queue->fastopenq->lock);
    }
    //ok,清理,返回newsk
    /*省略部分*/
//ipv4/inet_connection_sock.c
//accept连接请求的核心函数
static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
{
    struct inet_connection_sock *icsk = inet_csk(sk);
    //定义一个等待队列wait_queue_t wait 进程是当前进程
    DEFINE_WAIT(wait);
    int err;
    for (;;) {
        //sk_leep(sk) : sock的wait_queue_head_t
        //wait : wait_queue_t
        //这里将current进程的wait_queue_t加入sk的wait_queue_head_t中,spin锁定 
        //wait_queue_head_t,设置current状态,然后spin解锁时可能重新schedule 
        prepare_to_wait_exclusive(sk_sleep(sk), &wait,
                      TASK_INTERRUPTIBLE);

        //被唤醒,解锁sock 
        release_sock(sk);
        //如果请求队列为空,说明timeout了
        if (reqsk_queue_empty(&icsk->icsk_accept_queue))
            //schedule timeout
            timeo = schedule_timeout(timeo);

        //再锁住进行下次循环,准备再次进入TASK_INTERRUPTIBLE
        lock_sock(sk);
        err = 0;

        //检查是否有连接到达, 如果有,break,唤醒等待队列 
        if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
            break;
        err = -EINVAL;
        //如果不是listening 状态转过来的, 除错-EINVAL  
        if (sk->sk_state != TCP_LISTEN)
            break;

        //检查interrupt错误
        err = sock_intr_errno(timeo);

        //如果当前进程收到信号了,break 
        if (signal_pending(current))
            break;

        //如果传入的timeo为0,则回到nonblock的状态, break 
        err = -EAGAIN;
        if (!timeo)
            break;
    }

    //ok, 有连接到达,设置state为running, 唤醒wait queue的第一个进程,移除wait_queue_t和wait_queue_head_t 
    finish_wait(sk_sleep(sk), &wait);
    return err;
}
相关文章
|
25天前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
25天前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
26天前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
26天前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
2月前
|
Linux 网络安全 数据安全/隐私保护
Linux 超级强大的十六进制 dump 工具:XXD 命令,我教你应该如何使用!
在 Linux 系统中,xxd 命令是一个强大的十六进制 dump 工具,可以将文件或数据以十六进制和 ASCII 字符形式显示,帮助用户深入了解和分析数据。本文详细介绍了 xxd 命令的基本用法、高级功能及实际应用案例,包括查看文件内容、指定输出格式、写入文件、数据比较、数据提取、数据转换和数据加密解密等。通过掌握这些技巧,用户可以更高效地处理各种数据问题。
120 8
|
2月前
|
监控 Linux
如何检查 Linux 内存使用量是否耗尽?这 5 个命令堪称绝了!
本文介绍了在Linux系统中检查内存使用情况的5个常用命令:`free`、`top`、`vmstat`、`pidstat` 和 `/proc/meminfo` 文件,帮助用户准确监控内存状态,确保系统稳定运行。
466 6
|
2月前
|
Linux
在 Linux 系统中,“cd”命令用于切换当前工作目录
在 Linux 系统中,“cd”命令用于切换当前工作目录。本文详细介绍了“cd”命令的基本用法和常见技巧,包括使用“.”、“..”、“~”、绝对路径和相对路径,以及快速切换到上一次工作目录等。此外,还探讨了高级技巧,如使用通配符、结合其他命令、在脚本中使用,以及实际应用案例,帮助读者提高工作效率。
97 3
|
2月前
|
监控 安全 Linux
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景,包括 ping(测试连通性)、traceroute(跟踪路由路径)、netstat(显示网络连接信息)、nmap(网络扫描)、ifconfig 和 ip(网络接口配置)。掌握这些命令有助于高效诊断和解决网络问题,保障网络稳定运行。
81 2
|
25天前
|
Linux Shell
Linux 10 个“who”命令示例
Linux 10 个“who”命令示例
52 14
Linux 10 个“who”命令示例