Android 网络请求OkHttp3流程分析

简介:

基本概念

首先从使用出发,其次再结合源码来分析OkHttp3的内部实现的,建议大家下载 OkHttp 源码跟着本文,过一遍源码。首先来看一下OkHttp3的请求代码。

OkHttpClient client = new OkHttpClient();

String run(String url) throws IOException {
  Request request = new Request.Builder()
      .url(url)
      .build();

  Response response = client.newCall(request).execute();
  return response.body().string();
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

OkHttp3的执行流程

  1. 创建OkHttpClient对象。OkHttpClient为网络请求执行的一个中心,它会管理连接池,缓存,SocketFactory,代理,各种超时时间,DNS,请求执行结果的分发等许多内容。
  2. 创建Request对象。Request用于描述一个HTTP请求,比如请求的方法是GET还是POST,请求的URL,请求的header,请求的body,请求的缓存策略等。
  3. 创建Call对象。Call是一次HTTP请求的Task,它会执行网络请求以获得响应。OkHttp中的网络请求执行Call既可以同步进行,也可以异步进行。调用call.execute()将直接执行网络请求,阻塞直到获得响应。而调用call.enqueue()传入回调,则会将Call放入一个异步执行队列,由ExecutorService在后台执行。
  4. 执行网络请求并获取响应。

上面的代码中涉及到几个常用的类:Request、Response和Call。下面就这几个类做详细的介绍。

Request

每一个HTTP请求包含一个URL、一个方法(GET或POST或其他)、一些HTTP头,请求还可能包含一个特定内容类型的数据类的主体部分。

Response

响应是对请求的回复,包含状态码、HTTP头和主体部分。

Call

OkHttp使用Call抽象出一个满足请求的模型,尽管中间可能会有多个请求或响应。执行Call有两种方式,同步或异步。

那么首先来看一下OkHttpClient的源码实现。

public class OkHttpClient implements Cloneable, Call.Factory, WebSocket.Factory {
  public OkHttpClient() {
       this(new Builder());
  }
  OkHttpClient(Builder builder) {
    this.dispatcher = builder.dispatcher;
    this.proxy = builder.proxy;
    this.protocols = builder.protocols;
    this.connectionSpecs = builder.connectionSpecs;
    this.interceptors = Util.immutableList(builder.interceptors);
    this.networkInterceptors = Util.immutableList(builder.networkInterceptors);
    this.eventListenerFactory = builder.eventListenerFactory;
    this.proxySelector = builder.proxySelector;
    this.cookieJar = builder.cookieJar;
    this.cache = builder.cache;
    this.internalCache = builder.internalCache;
    this.socketFactory = builder.socketFactory;

    boolean isTLS = false;

    this.hostnameVerifier = builder.hostnameVerifier;
    this.certificatePinner = builder.certificatePinner.withCertificateChainCleaner(
        certificateChainCleaner);
    this.proxyAuthenticator = builder.proxyAuthenticator;
    this.authenticator = builder.authenticator;
    this.connectionPool = builder.connectionPool;
    this.dns = builder.dns;
    this.followSslRedirects = builder.followSslRedirects;
    this.followRedirects = builder.followRedirects;
    this.retryOnConnectionFailure = builder.retryOnConnectionFailure;
    this.connectTimeout = builder.connectTimeout;
    this.readTimeout = builder.readTimeout;
    this.writeTimeout = builder.writeTimeout;
    this.pingInterval = builder.pingInterval;
  }
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

然后使用okHttpClient发起请求。例如:

okHttpClient.newCall(request).enqueue(new Callback() {
  @Override
  public void onFailure(Call call, IOException e) {

 }

@Override
public void onResponse(Call call, Response response) throws IOException {

}
});

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

那接下来我们在看下Request。例如:

Request request = new Request.Builder().url("url").build();

 
 
  • 1

该段代码主要实现初始化构建者模式和请求对象,并且用URL替换Web套接字URL。其源码如下:

public final class Request {
    public Builder() {
      this.method = "GET";
      this.headers = new Headers.Builder();
    }
    public Builder url(String url) {
      ......

      // Silently replace web socket URLs with HTTP URLs.
      if (url.regionMatches(true, 0, "ws:", 0, 3)) {
        url = "http:" + url.substring(3);
      } else if (url.regionMatches(true, 0, "wss:", 0, 4)) {
        url = "https:" + url.substring(4);
      }

      HttpUrl parsed = HttpUrl.parse(url);
      ......
      return url(parsed);
    }
    public Request build() {
      ......
      return new Request(this);
    }
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

我们来看一下okHttpClient的异步请求方式。

okHttpClient.newCall(request).enqueue(new Callback() {
@Override
public void onFailure(Call call, IOException e) {

}

@Override
public void onResponse(Call call, Response response) throws IOException {

}
});

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

而newCall又调用了RealCall函数,来看源码:

public class OkHttpClient implements Cloneable, Call.Factory, WebSocket.Factory {
   @Override 
   public Call newCall(Request request) {
    return new RealCall(this, request, false
     /* for web socket */);
   }
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

RealCall实现了Call.Factory接口创建了一个RealCall的实例,而RealCall是Call接口的实现。继续看代码:

final class RealCall implements Call {
   @Override 
   public void enqueue(Callback responseCallback) {
   synchronized (this) {
   if (executed) throw new IllegalStateException("Already Executed");
      executed = true;
   }
    captureCallStackTrace();
    client.dispatcher().enqueue(new RealCall.AsyncCall(responseCallback));
  }
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

由上面的代码可以得出:

  • 检查这个 call 是否已经被执行了,每个 call 只能被执行一次,如果想要一个完全一样的 call,可以利用 call#clone方法进行克隆。
  • 利用 client.dispatcher().enqueue(this) 来进行实际执行,dispatcher 是刚才看到的OkHttpClient.Builder 的成员之一。
  • AsyncCall是RealCall的一个内部类并且继承NamedRunnable。
final class AsyncCall extends NamedRunnable {
        private final Callback responseCallback;

        AsyncCall(Callback responseCallback) {
            super("OkHttp %s", new Object[]{RealCall.this.redactedUrl()});
            this.responseCallback = responseCallback;
        }
        ...
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

而NamedRunnable又实现了Runnable接口,来看代码:

public abstract class NamedRunnable implements Runnable {
  ......

  @Override 
  public final void run() {
   ......
    try {
      execute();
    }
    ......
  }

  protected abstract void execute();
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

可以看到NamedRunnable实现了Runnbale接口并且是个抽象类,其抽象方法是execute(),该方法是在run方法中被调用的,这也就意味着NamedRunnable是一个任务,并且其子类应该实现execute方法。下面再看AsyncCall的实现:

final class AsyncCall extends NamedRunnable {
    private final Callback responseCallback;

    AsyncCall(Callback responseCallback) {
      super("OkHttp %s", redactedUrl());
      this.responseCallback = responseCallback;
    }

    ......
final class RealCall implements Call {
  @Override protected void execute() {
  boolean signalledCallback = false;
  try {
     Response response = getResponseWithInterceptorChain();
  if (retryAndFollowUpInterceptor.isCanceled()) {
     signalledCallback = true;
     responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
  } else {
    signalledCallback = true;
    responseCallback.onResponse(RealCall.this, response);
  }
 } catch (IOException e) {
  ......
  responseCallback.onFailure(RealCall.this, e);

} finally {
    client.dispatcher().finished(this);
  }
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

AsyncCall实现了execute方法,首先是调用getResponseWithInterceptorChain()方法获取响应,然后获取成功后,就调用回调的onReponse方法,如果失败,就调用回调的onFailure方法,并调用Dispatcher的finished方法。

Dispatcher线程池介绍

那还看一下Dispatcher类的相关代码:

public final class Dispatcher {
  /** 最大并发请求数为64 */
  private int maxRequests = 64;
  /** 每个主机最大请求数为5 */
  private int maxRequestsPerHost = 5;

  /** 线程池 */
  private ExecutorService executorService;

  /** 准备执行的请求 */
  private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();

  /** 正在执行的异步请求,包含已经取消但未执行完的请求 */
  private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();

  /** 正在执行的同步请求,包含已经取消单未执行完的请求 */
  private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();
  }

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

在OkHttp,使用如下构造了单例线程池,相关源码如下:

public synchronized ExecutorService executorService() {
    if (executorService == null) {
      executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
          new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
    }
    return executorService;
  }

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

executorService函数会构造一个线程池ExecutorService:

executorService = new ThreadPoolExecutor(
//corePoolSize 最小并发线程数,如果是0的话,空闲一段时间后所有线程将全部被销毁
    0, 
//maximumPoolSize: 最大线程数,当任务进来时可以扩充的线程最大值,当大于了这个值就会根据丢弃处理机制来处理
    Integer.MAX_VALUE, 
//keepAliveTime: 当线程数大于corePoolSize时,多余的空闲线程的最大存活时间
    60, 
//单位秒
    TimeUnit.SECONDS,
//工作队列,先进先出
    new SynchronousQueue<Runnable>(),   
//单个线程的工厂         
   Util.threadFactory("OkHttp Dispatcher", false));

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

可以看出,在Okhttp中,构建了一个核心为[0, Integer.MAX_VALUE]的线程池,它不保留任何最小线程数,随时创建更多的线程数,当线程空闲时只能活60秒,它使用了一个不存储元素的阻塞工作队列,一个叫做”OkHttp Dispatcher”的线程工厂。也就是说,在实际运行中,当收到10个并发请求时,线程池会创建十个线程,当工作完成后,线程池会在60s后相继关闭所有线程。

synchronized void enqueue(AsyncCall call) {
    if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
      runningAsyncCalls.add(call);
      executorService().execute(call);
    } else {
      readyAsyncCalls.add(call);
    }
  }

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

从上述源码分析,如果当前还能执行一个并发请求,则加入 runningAsyncCalls ,立即执行,否则加入 readyAsyncCalls 队列。由此,可以得出Dispatcher的以下作用。

  • 调度线程池Disptcher实现了高并发,低阻塞的实现;
  • 采用Deque作为缓存,先进先出的顺序执行;
  • 任务在try/finally中调用了finished函数,控制任务队列的执行顺序,而不是采用锁,减少了编码复杂性提高性能。
try {
        Response response = getResponseWithInterceptorChain();
        if (retryAndFollowUpInterceptor.isCanceled()) {
          signalledCallback = true;
          responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
        } else {
          signalledCallback = true;
          responseCallback.onResponse(RealCall.this, response);
        }
      } finally {
        client.dispatcher().finished(this);
      }

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

其流程可以用下图表示: 
这里写图片描述

getResponseWithInterceptorChain方法

相关的方法源码如下:

Response getResponseWithInterceptorChain() throws IOException {
    // Build a full stack of interceptors.
    List<Interceptor> interceptors = new ArrayList<>();
    interceptors.addAll(client.interceptors());
    interceptors.add(retryAndFollowUpInterceptor);
    interceptors.add(new BridgeInterceptor(client.cookieJar()));
    interceptors.add(new CacheInterceptor(client.internalCache()));
    interceptors.add(new ConnectInterceptor(client));
    if (!forWebSocket) {
      interceptors.addAll(client.networkInterceptors());
    }
    interceptors.add(new CallServerInterceptor(forWebSocket));

    Interceptor.Chain chain = new RealInterceptorChain(
        interceptors, null, null, null, 0, originalRequest);
    return chain.proceed(originalRequest);
  }

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

从上述源码得知,不管okhttp有多少拦截器最后都会走,如下方法:

Interceptor.Chain chain = new RealInterceptorChain(
        interceptors, null, null, null, 0, originalRequest);
return chain.proceed(originalRequest);

 
 
  • 1
  • 2
  • 3

从方法名字基本可以猜到是干嘛的,调用 chain.proceed(originalRequest); 将request传递进来,从拦截器链里拿到返回结果。那么看一下RealInterceptorChain类。

public final class RealInterceptorChain implements Interceptor.Chain {

   public RealInterceptorChain(List<Interceptor> interceptors, StreamAllocation streamAllocation,
        HttpCodec httpCodec, RealConnection connection, int index, Request request) {
        this.interceptors = interceptors;
        this.connection = connection;
        this.streamAllocation = streamAllocation;
        this.httpCodec = httpCodec;
        this.index = index;
        this.request = request;
  }
  ......

 @Override 
 public Response proceed(Request request) throws IOException {
    return proceed(request, streamAllocation, httpCodec, connection);
  }

  public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
      RealConnection connection) throws IOException {
    if (index >= interceptors.size()) throw new AssertionError();

    calls++;

    ......

    // Call the next interceptor in the chain.
    RealInterceptorChain next = new RealInterceptorChain(
        interceptors, streamAllocation, httpCodec, connection, index + 1, request);
    Interceptor interceptor = interceptors.get(index);
    Response response = interceptor.intercept(next);

   ......

    return response;
  }

  protected abstract void execute();
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

该类实现了Chain接口,在getResponseWithInterceptorChain调用时好几个参数都传的null。主要看proceed方法,proceed方法中判断index(此时为0)是否大于或者等于client.interceptors(List )的大小。由于httpStream为null,所以首先创建next拦截器链,主需要把索引置为index+1即可;然后获取第一个拦截器,调用其intercept方法。Interceptor 代码如下:

public interface Interceptor {
  Response intercept(Chain chain) throws IOException;

  interface Chain {
    Request request();

    Response proceed(Request request) throws IOException;

    Connection connection();
  }
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

BridgeInterceptor从用户的请求构建网络请求,然后提交给网络,最后从网络响应中提取出用户响应。从最上面的图可以看出,BridgeInterceptor实现了适配的功能。下面是其intercept方法:

public final class BridgeInterceptor implements Interceptor {
  ......

@Override 
public Response intercept(Chain chain) throws IOException {
  Request userRequest = chain.request();
  Request.Builder requestBuilder = userRequest.newBuilder();

 RequestBody body = userRequest.body();
 //如果存在请求主体部分,那么需要添加Content-Type、Content-Length首部
 if (body != null) {
      MediaType contentType = body.contentType();
      if (contentType != null) {
        requestBuilder.header("Content-Type", contentType.toString());
      }

      long contentLength = body.contentLength();
      if (contentLength != -1) {
        requestBuilder.header("Content-Length", Long.toString(contentLength));
        requestBuilder.removeHeader("Transfer-Encoding");
      } else {
        requestBuilder.header("Transfer-Encoding", "chunked");
        requestBuilder.removeHeader("Content-Length");
      }
    }

    if (userRequest.header("Host") == null) {
      requestBuilder.header("Host", hostHeader(userRequest.url(), false));
    }

    if (userRequest.header("Connection") == null) {
      requestBuilder.header("Connection", "Keep-Alive");
    }

    // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
    // the transfer stream.
    boolean transparentGzip = false;
    if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
      transparentGzip = true;
      requestBuilder.header("Accept-Encoding", "gzip");
    }

    List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
    if (!cookies.isEmpty()) {
      requestBuilder.header("Cookie", cookieHeader(cookies));
    }

  if (userRequest.header("User-Agent") == null) {
      requestBuilder.header("User-Agent", Version.userAgent());
  }

Response networkResponse = chain.proceed(requestBuilder.build());

HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());

Response.Builder responseBuilder = networkResponse.newBuilder()
        .request(userRequest);

    if (transparentGzip
        && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
        && HttpHeaders.hasBody(networkResponse)) {
      GzipSource responseBody = new GzipSource(networkResponse.body().source());
      Headers strippedHeaders = networkResponse.headers().newBuilder()
          .removeAll("Content-Encoding")
          .removeAll("Content-Length")
          .build();
      responseBuilder.headers(strippedHeaders);
      responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody)));
    }

    return responseBuilder.build();
  }

  /** Returns a 'Cookie' HTTP request header with all cookies, like {@code a=b; c=d}. */
  private String cookieHeader(List<Cookie> cookies) {
    StringBuilder cookieHeader = new StringBuilder();
    for (int i = 0, size = cookies.size(); i < size; i++) {
      if (i > 0) {
        cookieHeader.append("; ");
      }
      Cookie cookie = cookies.get(i);
      cookieHeader.append(cookie.name()).append('=').append(cookie.value());
    }
    return cookieHeader.toString();
  }
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86

从上面的代码可以看出,首先获取原请求,然后在请求中添加头,比如Host、Connection、Accept-Encoding参数等,然后根据看是否需要填充Cookie,在对原始请求做出处理后,使用chain的procced方法得到响应,接下来对响应做处理得到用户响应,最后返回响应。再看下一个拦截器ConnectInterceptor的处理:

public final class ConnectInterceptor implements Interceptor {
  ......

 @Override 
 public Response intercept(Chain chain) throws IOException {
 RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
StreamAllocation streamAllocation = realChain.streamAllocation();

 // We need the network to satisfy this request. Possibly for validating a conditional GET.
 boolean doExtensiveHealthChecks = !request.method().equals("GET");
 HttpCodec httpCodec = streamAllocation.newStream(client, doExtensiveHealthChecks);
 RealConnection connection = streamAllocation.connection();

 return realChain.proceed(request, streamAllocation, httpCodec, connection);
  }
}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

实际上建立连接就是创建了一个 HttpCodec 对象,它利用 Okio 对 Socket 的读写操作进行封装,Okio 以后有机会再进行分析,现在让我们对它们保持一个简单地认识:它对 java.io 和 java.nio 进行了封装,让我们更便捷高效的进行 IO 操作。

CallServerInterceptor

CallServerInterceptor是拦截器链中最后一个拦截器,负责将网络请求提交给服务器。

@Override 
public Response intercept(Chain chain) throws IOException {
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    HttpCodec httpCodec = realChain.httpStream();
    StreamAllocation streamAllocation = realChain.streamAllocation();
    RealConnection connection = (RealConnection) realChain.connection();
    Request request = realChain.request();

    long sentRequestMillis = System.currentTimeMillis();
    httpCodec.writeRequestHeaders(request);

    Response.Builder responseBuilder = null;
    if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
      // If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
      // Continue" response before transmitting the request body. If we don't get that, return what
      // we did get (such as a 4xx response) without ever transmitting the request body.
      if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
        httpCodec.flushRequest();
        responseBuilder = httpCodec.readResponseHeaders(true);
      }

      if (responseBuilder == null) {
        // Write the request body if the "Expect: 100-continue" expectation was met.
        Sink requestBodyOut = httpCodec.createRequestBody(request, request.body().contentLength());
        BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
        request.body().writeTo(bufferedRequestBody);
        bufferedRequestBody.close();
      } else if (!connection.isMultiplexed()) {
        // If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection from
        // being reused. Otherwise we're still obligated to transmit the request body to leave the
        // connection in a consistent state.
        streamAllocation.noNewStreams();
      }
    }

    httpCodec.finishRequest();

    if (responseBuilder == null) {
      responseBuilder = httpCodec.readResponseHeaders(false);
    }

    Response response = responseBuilder
        .request(request)
        .handshake(streamAllocation.connection().handshake())
        .sentRequestAtMillis(sentRequestMillis)
        .receivedResponseAtMillis(System.currentTimeMillis())
        .build();

    int code = response.code();
    if (forWebSocket && code == 101) {
      // Connection is upgrading, but we need to ensure interceptors see a non-null response body.
      response = response.newBuilder()
          .body(Util.EMPTY_RESPONSE)
          .build();
    } else {
      response = response.newBuilder()
          .body(httpCodec.openResponseBody(response))
          .build();
    }

    if ("close".equalsIgnoreCase(response.request().header("Connection"))
        || "close".equalsIgnoreCase(response.header("Connection"))) {
      streamAllocation.noNewStreams();
    }

    if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
      throw new ProtocolException(
          "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
    }

    return response;
  }

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72

从上面的代码中可以看出,首先获取HttpStream对象,然后调用writeRequestHeaders方法写入请求的头部,然后判断是否需要写入请求的body部分,最后调用finishRequest()方法将所有数据刷新给底层的Socket,接下来尝试调用readResponseHeaders()方法读取响应的头部,然后再调用openResponseBody()方法得到响应的body部分,最后返回响应。

总结

最后我们用一张图来总结ohhttp的整个请求流程。 
这里写图片描述

OkHttp的底层是通过Java的Socket发送HTTP请求与接受响应的(,但是OkHttp实现了连接池的概念,即对于同一主机的多个请求,其实可以公用一个Socket连接,而不是每次发送完HTTP请求就关闭底层的Socket,这样就实现了连接池的概念,而且OkHttp对Socket的读写操作使用的OkIo库进行了一层封装。

目录
相关文章
|
2月前
|
开发框架 前端开发 Android开发
Flutter 与原生模块(Android 和 iOS)之间的通信机制,包括方法调用、事件传递等,分析了通信的必要性、主要方式、数据传递、性能优化及错误处理,并通过实际案例展示了其应用效果,展望了未来的发展趋势
本文深入探讨了 Flutter 与原生模块(Android 和 iOS)之间的通信机制,包括方法调用、事件传递等,分析了通信的必要性、主要方式、数据传递、性能优化及错误处理,并通过实际案例展示了其应用效果,展望了未来的发展趋势。这对于实现高效的跨平台移动应用开发具有重要指导意义。
221 4
|
2月前
|
人工智能 边缘计算 物联网
蜂窝网络未来发展趋势的分析
蜂窝网络未来发展趋势的分析
82 2
|
2月前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
13天前
|
存储 安全 物联网
浅析Kismet:无线网络监测与分析工具
Kismet是一款开源的无线网络监测和入侵检测系统(IDS),支持Wi-Fi、Bluetooth、ZigBee等协议,具备被动监听、实时数据分析、地理定位等功能。广泛应用于安全审计、网络优化和频谱管理。本文介绍其安装配置、基本操作及高级应用技巧,帮助用户掌握这一强大的无线网络安全工具。
43 9
浅析Kismet:无线网络监测与分析工具
|
16天前
|
数据采集 机器学习/深度学习 人工智能
基于AI的网络流量分析:构建智能化运维体系
基于AI的网络流量分析:构建智能化运维体系
90 13
|
1月前
|
Java 开发工具 Android开发
安卓与iOS开发环境对比分析
在移动应用开发的广阔天地中,安卓和iOS两大平台各自占据半壁江山。本文深入探讨了这两个平台的开发环境,从编程语言、开发工具到用户界面设计等多个角度进行比较。通过实际案例分析和代码示例,我们旨在为开发者提供一个清晰的指南,帮助他们根据项目需求和个人偏好做出明智的选择。无论你是初涉移动开发领域的新手,还是寻求跨平台解决方案的资深开发者,这篇文章都将为你提供宝贵的信息和启示。
32 8
|
2月前
|
安全 Android开发 数据安全/隐私保护
深入探索Android与iOS系统安全性的对比分析
在当今数字化时代,移动操作系统的安全已成为用户和开发者共同关注的重点。本文旨在通过比较Android与iOS两大主流操作系统在安全性方面的差异,揭示两者在设计理念、权限管理、应用审核机制等方面的不同之处。我们将探讨这些差异如何影响用户的安全体验以及可能带来的风险。
47 1
|
19天前
|
安全 网络协议 网络安全
网络不稳定导致HTTP代理频繁掉线的分析
随着数字化时代的加速发展,网络安全、隐私保护及内容访问自由成为用户核心需求。HTTP代理服务器因其独特技术优势受到青睐,但其掉线问题频发。本文分析了HTTP代理服务器不稳定导致掉线的主要原因,包括网络问题、服务器质量、用户配置错误及IP资源问题等方面。
60 0
|
2月前
|
安全 网络协议 网络安全
【Azure 环境】从网络包中分析出TLS加密套件信息
An TLS 1.2 connection request was received from a remote client application, but non of the cipher suites supported by the client application are supported by the server. The connection request has failed. 从远程客户端应用程序收到 TLS 1.2 连接请求,但服务器不支持客户端应用程序支持的任何密码套件。连接请求失败。
|
API Android开发
【Android 插件化】Hook 插件化框架 ( Hook Activity 启动流程 | Hook 点分析 )(一)
【Android 插件化】Hook 插件化框架 ( Hook Activity 启动流程 | Hook 点分析 )(一)
178 0
【Android 插件化】Hook 插件化框架 ( Hook Activity 启动流程 | Hook 点分析 )(一)