汽车市场将是嵌入式视觉应用最有潜力发展领域

简介:

据行业分析预测,2016年至2021年间,ADAS市场将以10.44%的复合年增长率增长。这些应用中最常用的嵌入式视觉产品是摄像头模块。供应商要么自己开发分析工具和算法,要么采用来自外部开发工程师的第三方IP。
新兴的汽车应用领域之一是驾驶员监控系统,该系统使用视觉应用追踪驾驶员头部和身体动作以进行疲劳状态识别。另一个是视觉系统,通过监测看短信或饮食等潜在的驾驶员分心因素提高车辆操作安全。
但是汽车中的视觉系统可以做的远不止是监控车内发生的事情。从2018年起,有一些国家的法规将要求新车必须配备后视摄像头,以帮助司机看到车辆后方的情况。像车道偏离预警系统这样的新应用将视频和车道检测算法结合起来,以评估汽车的位置。此外,市场需求也推动了阅读警示标志、撞击缓冲、盲点检测、自动泊车、倒车辅助等功能的发展。所有这些功能都有助于让驾驶变得更安全。
汽车视觉和传感系统的发展为实现真正的自动驾驶奠定了基础。例如,凯迪拉克将在2018年将其嵌入式视觉子系统集成到CT6轿车中,以实现业界首款解放双手的驾驶技术SuperCruise。通过不断分析驾驶员和道路情况,精确的LIDAR数据库提供道路情况,而先进的摄像头、传感器和GPS实时反应道路的动态状况细节,这项新技术将使驾驶变得更加安全。总体而言,汽车制造商已经形成了一致的想法,即现代车辆中的ADAS系统将需要前置摄像头进行车道检测、行人检测、交通标志识别和紧急制动功能。同时还需要侧面和后面的摄像头来支持停车辅助、盲点检测和交叉车流警报功能。
汽车制造商面临的一个挑战是现有电子设备中的I/O数量有限。目前主流处理器仅具备两个摄像头接口。然而,许多ADAS系统需要多达8台摄像头才能满足图像质量要求。设计工程师需要的解决方案要能够为他们提供协同处理资源,将来自多个摄像头的视频流拼接在一起,或基于摄像头输入执行图像处理功能,如白平衡、鱼眼校正和除雾等,并通过单个数据流将数据发送到应用处理器(AP)。例如,许多汽车制造商提供的ADAS系统中都具备鸟瞰视图功能,驾驶员可以看到车辆上方20英尺处向下的现场视频。ADAS系统通过将来自4个或更多摄像头的数据拼接为宽视野图像实现这一功能。
以前,设计工程师在驱动每个显示屏时都要使用一个处理器。而现在,设计工程师可以使用单个FPGA替代多个处理器,聚合所有摄像头数据,将图像拼接在一起,执行预处理和后处理功能,并将图像发送到系统处理器。下图展示了360度鸟瞰汽车摄像系统的简化架构,该系统从位于汽车周围的4个摄像头(前方、后方和两侧)收集数据。系统使用单个FPGA进行各种预处理和后处理功能以及视频数据拼接,提供显示车辆周围环境的360度视图。在这种情况下,单个FPGA将取代多个处理器。
嵌入式视觉
朗锐智科多年来专业于嵌入式开发与研究,为客户提供专业的嵌入式机器视觉方案。鉴于汽车领域中电子应用的迅速增长,汽车市场无疑是嵌入式视觉应用最有潜力的发展领域。高级驾驶辅助系统和信息娱乐功能的推出有望快速推动相关市场的增长。

相关文章
|
5天前
|
人工智能 运维 安全
|
3天前
|
人工智能 异构计算
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
|
10天前
|
人工智能 JavaScript 测试技术
Qwen3-Coder入门教程|10分钟搞定安装配置
Qwen3-Coder 挑战赛简介:无论你是编程小白还是办公达人,都能通过本教程快速上手 Qwen-Code CLI,利用 AI 轻松实现代码编写、文档处理等任务。内容涵盖 API 配置、CLI 安装及多种实用案例,助你提升效率,体验智能编码的乐趣。
848 109
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
B站开源IndexTTS2,用极致表现力颠覆听觉体验
在语音合成技术不断演进的背景下,早期版本的IndexTTS虽然在多场景应用中展现出良好的表现,但在情感表达的细腻度与时长控制的精准性方面仍存在提升空间。为了解决这些问题,并进一步推动零样本语音合成在实际场景中的落地能力,B站语音团队对模型架构与训练策略进行了深度优化,推出了全新一代语音合成模型——IndexTTS2 。
482 12
|
4天前
|
人工智能 测试技术 API
智能体(AI Agent)搭建全攻略:从概念到实践的终极指南
在人工智能浪潮中,智能体(AI Agent)正成为变革性技术。它们具备自主决策、环境感知、任务执行等能力,广泛应用于日常任务与商业流程。本文详解智能体概念、架构及七步搭建指南,助你打造专属智能体,迎接智能自动化新时代。
|
5天前
|
机器学习/深度学习 传感器 算法
Edge Impulse:面向微型机器学习的MLOps平台——论文解读
Edge Impulse 是一个面向微型机器学习(TinyML)的云端MLOps平台,致力于解决嵌入式与边缘设备上机器学习开发的碎片化与异构性难题。它提供端到端工具链,涵盖数据采集、信号处理、模型训练、优化压缩及部署全流程,支持资源受限设备的高效AI实现。平台集成AutoML、量化压缩与跨硬件编译技术,显著提升开发效率与模型性能,广泛应用于物联网、可穿戴设备与边缘智能场景。
188 127