SPF(Dijkstra)算法蜜汁教程>上

简介:

---文章搬家缘故,图片全免了...敬请谅解

独家制作SPF算法深度揭秘,一看就懂!!

摘要:

  SPF(shortest path first)算法也叫Dijkstra(迪杰斯特拉)算法,由上个世纪的计算机科学家狄克斯特拉提出,是离散数学中一种经典高效的网络(连通图)最短路径寻路算法.指定一个源点,求出到其余各个顶点的最短路径,也叫”单源最短路径”.

应用场景:

  地图导航以及网络路由等.

主要特点:

  单个节点拥有上帝视角;以源点为中心向外层层扩展直到终点.

输入:

  已知有限个节点和唯一的源点;已知每一条边的权重并且是正数.

循环周期:

  先确认距离最短的下一跳,再更新下一跳的邻居.

输出:

  得到从源点到剩下所有节点的最短路径信息.

案例拓扑图:

  以上面这张复杂的图为例.SPF算法本来是解决有向图的,但因为有向图自然包括了无向图,所以我选择了这张更具代表性的地图. 
  然后核心问题就是分别求出v0到v1~v8的最短路径.
  和Floyd-Warshall算法一样,用二维数组MAP[][]来存放上图每条链路的开销(每条边的权),然后计算机从这个数据库中算出一棵棵SPF树:
  注意,这是一张静态表,也就是这张表中数据是不会变化的,为了和后面要用到的动态数组区分开来.
  因为是无向图(也可理解为双向图),所以表格沿主对角线两边对称,下三角形就用”/“代表省略.
  每个单元格的行和列坐标对应了上图中哪两个节点之间的路径开销,这里认为节点到自己的路径开销为0.剩下不直接相连的两个节点之间都用”∞”表示无穷大.以上就是和Floyd-Warshall表格的不同之处.这张表也就是数字化的拓扑图,便于程序读取其中数据.
  然后我们需要一个动态一维数组min[].它的初始状态就是MAP中第二行(v0那一行),末状态就是整个算法要得到的结果:v0到其余所有节点的最短路径开销总值.

初状态:

  这张表的工作模式可以类比网络世界里各种IP协议中司空见贯的”cost字段”,言下之意即是:先保留一个非常”劣”缺省值,一遇到更优的数值就更新这个字段,直到收敛成最优为止.这张表非常重要,之后会一直用到它.其中9个字段中提前收敛到最优值(不会在减小)的已经确定的最短路径我们称之为”真”(在表中不妨标记为红色数字),正好对应了C语言中bool变量的”true”.这里体现了设置缺省值的重要思想,通常把∞的大小设置成99999.

具体详解:

  做完前期准备,正式进入SPF算法每一步的详解.
  我将以上图为例叙述一遍完整的计算过程,亲爱的读者们若是看懵逼了请别慌,后面会有一个完整的总结帮助你理解!
  首先min中v0列恒为0,所以永”真”.然后非无穷的”1”和”5”是v0的全部邻居,其中取最小的”1”就是v0到v1的最短路径,v1列”真”.原因显而易见,如果有其他路径到达v1,必然要经过其他的邻居,那些路径(这里只有走v2的那条)都比”5”大,所以都排除.
  此时v2列还无法确认是真,因为有可能从更近的v1出去再到达v2的某条路径更短.所以我接下来一个动作是从v1发散到v1所有的邻居并更新min表.
  CPU查看MAP时发现v1可到达v2,v3和v4.v0就不用去了,第一是环路,第二v0列已经是真,无法再刷新该字段.由此v0通过v1到达v2,v3和v4的开销为3+1,7+1,5+1.然后刷新min表:
  到此为止,SPF算法已经完成了第一个循环周期,即开篇所说的:先确认距离最短的下一跳(即确认真值v1),再更新下一跳的邻居(发散v1并更新min表).专业术语中周期后半部分的”发散”被称为”松弛”,但个人觉得前者更通俗易懂,所以下文我都用”发散”来表达这个过程.接下来进入第二个周期:
  此时最小的v2列为真!!(我当时就在这个点上纠结了一个小时…)因!为!通过前两个已经为真的v0和v1发散出去的所!有!路径(止于邻居)都赫然写在min表中(4,8,6),也就是说其他到达v2的路径长度至少也要大于6.大家如果把这一点弄明白,之后的过程就轻车熟路了.这是SPF算法的核心理论,而且这个理论就藏在算法的名字中:”最短路径优先”!一下没弄明白没关系,后面根据提示回顾几遍保你摸透它.
  确认了v2以后,按照第一个周期依葫芦画瓢,紧接着就要以v2为中心发散到v4和v5.和之前一样,v0和v1就不用再去了,他们已经是真了,之后不再赘述此原因.刷新min表得:

第三个周期:

 在v3,v4和v5中选择最小的v4,v4列为真,原因不再赘述,标为红色如表.再发散v4刷新v3v5v6v7:

第四个周期:

 v3v5v6v7中击中v3为真,发散v3到v6:

第五个周期:

 v5v6v7中击中v5为真,发散v5到v7:

第六个周期:

 v6v7中击中v6为真,发散v6到v7v8:

第七个周期:

 v7v8中击中v7为真,发散v7到v8:
目录
相关文章
|
5月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
165 3
|
5月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
138 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
人工智能 算法 搜索推荐
算法备案全流程攻略:保姆级教程
在AI热潮下,算法成为互联网服务的核心驱动力,但也带来了大数据杀熟、算法歧视等问题。为规范行业发展,算法备案制度应运而生。该制度涵盖网站、APP等多种产品形式,要求企业在2个月内完成备案,依据《互联网信息服务算法推荐管理规定》等法规。未备案企业可能面临无法上线、罚款甚至刑罚的后果。备案流程包括注册、主体备案、信息填报及审核,确保算法合规运营。通过悬挂备案号、标识AI生成内容和定期自查,企业需持续维护算法安全与合规。
|
1月前
|
算法 编译器 C++
【狂热算法篇】探秘图论之Dijkstra 算法:穿越图的迷宫的最短路径力量(通俗易懂版)
【狂热算法篇】探秘图论之Dijkstra 算法:穿越图的迷宫的最短路径力量(通俗易懂版)
|
4月前
|
存储 算法 网络协议
OSPF的SPF算法介绍:原理、实现与应用
OSPF的SPF算法介绍:原理、实现与应用
184 3
|
6月前
|
人工智能 算法 安全
深度讲解-互联网算法备案指南和教程
随着人工智能和大数据技术的发展,互联网算法在内容推荐、用户画像等领域日益重要,但也带来了安全风险和合规挑战。国家互联网信息办公室为此发布了《互联网算法备案管理规定》,要求具有舆论属性或社会动员能力的互联网信息服务提供者进行算法备案,以确保算法透明性和合规性,维护网络健康秩序。唯安创远AI合规专家将解析备案的必要性、流程及其对企业的影响,帮助企业顺利完成备案。
541 3
|
5月前
|
存储 算法 程序员
迪杰斯特拉(Dijkstra)算法(C/C++)
迪杰斯特拉(Dijkstra)算法(C/C++)
|
7月前
|
机器学习/深度学习 算法 Java
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
这篇文章介绍了基于贪婪技术思想的Prim算法和Dijkstra算法,包括它们的伪代码描述、Java源代码实现、时间效率分析,并展示了算法的测试用例结果,使读者对贪婪技术及其应用有了更深入的理解。
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
|
7月前
|
算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
158 0
|
5天前
|
算法 数据安全/隐私保护 异构计算
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。