从无人驾驶领域看计算机视觉与机器视觉技术的

简介:

人工智能时代,三个最热门的词莫过于无人机、无人驾驶和机器人。这些无人参与操作的智能设备有什么共性?首先是要有一个“大脑”,即用计算机代替人脑来处理大量复杂的信息数据。其次,都需要“眼睛”来感应周围环境并做出及时且正确的反应。这些智能机器的“大脑”由一组高性能CPU芯片组成,其“眼睛”则是由摄像头、视觉处理器(VPU)和专有的软件系统实现。
机器视觉
无论是无人机送货,还是谷歌的自动驾驶,其背后都有视觉技术的强大支持。那么,计算机视觉和机器视觉技术在自动驾驶、无人机和工业机器人等应用方面又有什么区别呢?
计算机视觉最早开始于上世纪70年代的人工智能研究。从工程学的角度来看,它是利用计算机来实现人类视觉系统可以完成的任务,主要包括数字图像和3D图像的采集、处理和分析方法。其应用领域主要有医疗成像、工业机器人自动检测、安保和统计、人机交互等。最近才火爆起来的无人驾驶汽车也是计算机视觉发挥重要作用的市场。
将计算机视觉技术应用于高级驾驶辅助系统(ADAS)和自动驾驶领域最成功的公司当属以色列的Mobileye,其股票市值超过10亿美元,全球主要汽车厂商和Tier 1汽车零配件供应商都在使用该公司的视觉感应处理芯片EyeQ及配套的自动感应系统。去年Mobileye与BMW和Intel达成合作联盟,共同开发自动驾驶平台和地图。
据专业人士介绍,无人驾驶技术链非常长,但基本可分为三个阶段:感知、决策和控制。计算机视觉技术主要应用在无人驾驶的感知阶段,其基本原理大致如下:
1.使用双目视觉系统获取场景中的深度信息。它可以帮助进行后续的图像语义理解,在无人驾驶中可以帮助探索可行驶区域和目标障碍物。
2.通过视频来估计每一个像素的运动方向和运动速度。
3.对物体进行检测与追踪。在无人驾驶中主要是各种车辆、行人、非机动车。
4.对于整个场景的理解。最重要的有两点,第一是道路线检测,其次是在道路线检测下更进一步,即把场景中的每一个像素打成标签,这叫做场景分割或者场景解析。
5.同步地图构建和定位技术,即SLAM(Simultaneous Localization and Mapping)技术。
机器视觉在基本原理上跟计算机视觉类似,可以说是计算机视觉在自动化检测和工业控制方面的系统工程分支。跟计算机视觉不同的是,机器视觉侧重于以新的方式集成现有技术,并用于解决现实世界的图像处理问题。一个基本的机器视觉系统主要包括光源、摄像头、视觉处理器和输出组件。其主要应用在于自动化检测和工业机器人导视系统,最近几年发展起来的无人机也是机器视觉的一个新兴应用市场。
大疆的Mavic Pro系列无人机采用了双目立体视觉的精准悬停技术,突破了光流定位的局限性,甚至可实现户外高空飞行时无GPS信号的精准悬停。它能够实时感知飞行前方30米的环境情况,可在15米范围内的障碍物前自动刹车悬停或者绕行,从而大幅提升了飞行的安全性。此外,它还能在起飞时采集地面图像,在自动返航时能精准地返回起飞地点。
这种精准悬停功能的实现得益于Movidius公司的Myriad 2视觉处理器(VPU)。该公司的机器视觉处理芯片Myriad 2及配套的机器视觉智能算法系统在谷歌、联想的智能设备中也有使用。此外,全球领先的安防系统供应商海康威视最近在中东(迪拜)国际安防设备与技术展览会(Intersec Middle East)上展出了“雄鹰”Ⅲ系列六旋翼飞行器。这种无人机融入了先进的智能视觉感知系统(由Movidius的Myriad 2视觉处理器实现),以及超声光流定位系统,可以实现远距离智能感知障碍物,并自动悬停,从而避免危险发生。依靠超声和光流系统,它能够在无GPS的情况下精准定位,起降时更加安全。
在AI时代,从前局限于计算机科学研究和特定行业应用的计算机视觉和机器视觉技术开始走向前台,点亮无数智能设备的“眼睛”。随着无人机、机器人和无人驾驶等新兴智能设备的快速发展,计算机视觉和机器视觉在传统意义上的区别也变得模糊不清。无论在工厂还是在商店,在高速公路上还是在空中,我们都将看到越来越多的智能“眼睛”在扫视和采集周围环境信息。这些智能设备的普及不但可以解放人手,而且连人的眼睛也可以解放出来。

相关文章
|
7月前
|
机器学习/深度学习 计算机视觉
AIGC核心技术——计算机视觉(CV)预训练大模型
【1月更文挑战第13天】AIGC核心技术——计算机视觉(CV)预训练大模型
639 3
AIGC核心技术——计算机视觉(CV)预训练大模型
|
7月前
|
算法 自动驾驶 安全
计算机视觉(CV)技术的优势和挑战
计算机视觉(CV)技术的优势和挑战
153 0
|
2月前
|
机器学习/深度学习 人工智能 机器人
计算机视觉技术介绍
【10月更文挑战第14天】 计算机视觉技术介绍
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习与计算机视觉的结合:技术趋势与应用
深度学习与计算机视觉的结合:技术趋势与应用
206 9
|
4月前
|
监控 算法 自动驾驶
计算机视觉的实践与挑战:技术深度剖析
【8月更文挑战第21天】计算机视觉技术作为人工智能的璀璨明珠,正逐步深入到我们生活的各个方面,带来前所未有的便利和变革。然而,随着技术的不断发展,我们也面临着诸多挑战和问题。未来,我们需要不断推动技术创新和跨学科合作,加强数据安全和隐私保护,提升算法的鲁棒性和可解释性,以应对这些挑战并推动计算机视觉技术的持续发展。让我们共同努力,探索计算机视觉技术的广阔天地,为创造一个更加智能、安全和美好的世界而不懈努力。
|
4月前
|
传感器 自动驾驶 安全
计算机视觉在自动驾驶中的应用:技术解析与未来展望
【8月更文挑战第4天】自动驾驶依托计算机视觉实现环境感知与决策,通过目标检测、跟踪及车道识别等技术保障行车安全与效率。面对数据处理、场景理解等挑战,未来技术将持续优化,深化智能驾驶体验,引领交通行业变革。
|
4月前
|
机器学习/深度学习 并行计算 算法
Ebsynth:利用图像处理和计算机视觉的视频风格转换技术工具
EbSynth 是一款基于视频风格转换技术的工具,专注于将静态艺术风格应用到视频中的每一帧,使视频具有独特的艺术效果。它利用图像处理和计算机视觉技术,将用户提供的参考图像或绘画风格转换为视频效果。
141 2
|
5月前
|
机器学习/深度学习 人工智能 监控
计算机视觉技术在安防领域的应用深度解析
【7月更文挑战第28天】计算机视觉技术作为人工智能领域的重要分支,在安防领域的应用前景广阔。通过不断提升技术性能和解决实际应用中的问题,计算机视觉技术将进一步提升安防工作的效率和准确性,为公共安全和社会稳定贡献更大的力量。
|
5月前
|
机器学习/深度学习 传感器 人工智能
高效能计算机视觉技术在工业自动化中的应用与发展
随着工业自动化的迅速发展,高效能计算机视觉技术正成为关键驱动力。本文探讨了计算机视觉在工业自动化中的重要性,以及其应用和未来发展趋势。通过深入分析现有技术和案例研究,展示了计算机视觉如何提升生产效率、质量控制和安全性,并展望了其在智能制造中的潜力。 【7月更文挑战第13天】
76 1
|
6月前
|
机器学习/深度学习 算法 计算机视觉
计算机视觉是一门研究如何使计算机“看”的技术,其目标是让计算机能够像人类视觉一样理解和解释视觉信息。
计算机视觉是一门研究如何使计算机“看”的技术,其目标是让计算机能够像人类视觉一样理解和解释视觉信息。

热门文章

最新文章