socket编程的select模型

简介:

在掌握了socket相关的一些函数后,套接字编程还是比较简单的,日常工作中碰到很多的问题就是客户端/服务器模型中,如何让服务端在同一时间高效的处理多个客户端的连接,我们的处理办法可能会是在服务端不停的监听客户端的请求,有新的请求到达时,开辟一个新的线程去和该客户端进行后续处理,但是这样针对每一个客户端都需要去开辟一个新的线程,效率必定底下。

     其实,socket编程提供了很多的模型来处理这种情形,我们只要按照模型去实现我们的代码就可以解决这个问题。主要有select模型和重叠I/o模型,以及完成端口模型。这次,我们主要介绍下select模型,该模型又分为普通select模型,wsaasyncselect模型,wsaeventselect模型。我们将通过样例代码的方式逐一介绍。

一、select模型

使用该模型时,在服务端我们可以开辟两个线程,一个线程用来监听客户端的连接

请求,另一个用来处理客户端的请求。主要用到的函数为select函数。如:

全局变量:

fd_set  g_fdClientSock;

线程1处理函数:

复制代码
复制代码
    SOCKET listenSock = socket( AF_INET, SOCK_STREAM, IPPROTO_TCP );

    sockaddr_in sin;
    sin.sin_family = AF_INET;
    sin.sin_port = htons(7788);
    sin.sin_addr.S_un.S_addr = INADDR_ANY;

    int nRet = bind( listenSock, (sockaddr*)&sin, (int)(sizeof(sin)));
    if ( nRet == SOCKET_ERROR )
    {
        DWORD errCode = GetLastError();
return; } listen( listenSock, 5); int clientNum = 0; sockaddr_in clientAddr; int nameLen = sizeof( clientAddr ); while( clientNum < FD_SETSIZE ) { SOCKET clientSock = accept( listenSock, (sockaddr*)&clientAddr, &nameLen );
FD_SET( clientSock, &g_fdClientSock); clientNum++;
}
复制代码
复制代码

线程2处理函数:

复制代码
复制代码
    fd_set fdRead;
    FD_ZERO( &fdRead );
    int nRet = 0;
char* recvBuffer =(char*)malloc( sizeof(char) * 1024 ); if ( recvBuffer == NULL ) { return;
} memset( recvBuffer, 0, sizeof(char) * 1024 ); while ( true ) { fdRead = g_fdClientSock; nRet = select( 0, &fdRead, NULL, NULL, NULL ); if ( nRet != SOCKET_ERROR ) { for ( int i = 0; i < g_fdClientSock.fd_count; i++ ) { if ( FD_ISSET(g_fdClientSock.fd_array[i],&fdRead) ) { memset( recvBuffer, 0, sizeof(char) * 1024 ); nRet = recv( g_fdClientSock.fd_array[i], recvBuffer, 1024, 0); if ( nRet == SOCKET_ERROR ) { closesocket( g_fdClientSock.fd_array[i] ); FD_CLR( g_fdClientSock.fd_array[i], &g_fdClientSock ); } else { //todo:后续处理 } } } } } if ( recvBuffer != NULL ) {
free( recvBuffer );
}
复制代码
复制代码

该模型有个最大的缺点就是,它需要一个死循环不停的去遍历所有的客户端套接字集合,询问是否有数据到来,这样,如果连接的客户端很多,势必会影响处理客户端请求的效率,但它的优点就是解决了每一个客户端都去开辟新的线程与其通信的问题。如果有一个模型,可以不用去轮询客户端套接字集合,而是等待系统通知,当有客户端数据到来时,系统自动的通知我们的程序,这就解决了select模型带来的问题了。

二、WsaAsyncSelect模型

WsaAsyncSelect模型就是这样一个解决了普通select模型问题的socket编程模型。它是在有客户端数据到来时,系统发送消息给我们的程序,我们的程序只要定义好消息的处理方法就可以了,用到的函数只要是WSAAsyncSelect,如:

首先,我们定义一个Windows消息,告诉系统,当有客户端数据到来时,发送该消息给我们。

#define  UM_SOCK_ASYNCRECVMSG  WM_USER + 1

在我们的处理函数中可以如下监听客户端的连接:

复制代码
复制代码
    SOCKET listenSock = socket( AF_INET, SOCK_STREAM, IPPROTO_TCP );
    sockaddr_in sin;
    sin.sin_family = AF_INET;
    sin.sin_port = htons(7788);
    sin.sin_addr.S_un.S_addr = INADDR_ANY;
    int nRet = bind( listenSock, (sockaddr*)&sin, (int)(sizeof(sin)));
    if ( nRet == SOCKET_ERROR )
    {
        DWORD errCode = GetLastError();
        return;
} listen( listenSock, 5); int clientNum = 0;
sockaddr_in clientAddr; int nameLen = sizeof( clientAddr ); while( clientNum < FD_SETSIZE )
{ SOCKET clientSock = accept( listenSock, (sockaddr*)&clientAddr, &nameLen ); //hWnd为接收系统发送的消息的窗口句柄 WSAAsyncSelect( clientSock, hWnd, UM_SOCK_ASYNCRECVMSG, FD_READ | FD_CLOSE ); clientNum++; }
复制代码
复制代码

 

接下来,我们需要在我们的窗口添加对UM_SOCK_ASYNCRECVMSG消息的处理函数,在该函数中真正接收客户端发送过来的数据,在这个消息处理函数中的wparam参数表示的是客户端套接字,lparam参数表示的是发生的网络事件如:

复制代码
复制代码
   SOCKET clientSock = (SOCKET)wParam;
   if ( WSAGETSELECTERROR( lParam ) )
   {
closesocket( clientSock ); return;
} switch ( WSAGETSELECTEVENT( lParam ) )
{ case FD_READ:
{
char recvBuffer[1024] = {'\0'}; int nRet = recv( clientSock, recvBuffer, 1024, 0 ); if ( nRet > 0 ) { szRecvMsg.AppendFormat(_T("Client %d Say:%s\r\n"), clientSock, recvBuffer ); } else { //client disconnect szRecvMsg.AppendFormat(_T("Client %d Disconnect!\r\n"), clientSock ); }
} break; case FD_CLOSE: {
closesocket( clientSock ); szRecvMsg.AppendFormat(_T("Client %d Disconnect!\r\n"), clientSock ); } break; }
复制代码
复制代码

    可以看到WsaAsyncSelect模型是非常简单的模型,它解决了普通select模型的问题,但是它最大的缺点就是它只能用在windows程序上,因为它需要一个接收系统消息的窗口句柄,那么有没有一个模型既可以解决select模型的问题,又不限定只能是windows程序才能用呢?下面我们来看看WsaEventSelect模型。

三、WsaEventSelect模型

WsaEventSelect模型是一个不用主动去轮询所有客户端套接字是否有数据到来的模型,它也是在客户端有数据到来时,系统发送通知给我们的程序,但是,它不是发送消息,而是通过事件的方式来通知我们的程序,这就解决了WsaAsyncSelect模型只能用在windows程序的问题。

该模型的实现,我们也可以开辟两个线程来进行处理,一个用来接收客户端的连接请求,一个用来与客户端进行通信,用到的主要函数有WSAEventSelect,WSAWaitForMultipleEvents,WSAEnumNetworkEvents实现方式如下:

首先定义三个全局数组

SOCKET      g_SockArray[MAX_NUM_SOCKET];//存放客户端套接字

WSAEVENT    g_EventArray[MAX_NUM_SOCKET];//存放该客户端有数据到来时,触发的事件

UINT32      g_totalEvent = 0;//记录客户端的连接数

线程1处理函数如下:

复制代码
复制代码
    SOCKET listenSock = socket( AF_INET, SOCK_STREAM, IPPROTO_TCP );
    sockaddr_in sin;
    sin.sin_family = AF_INET;
    sin.sin_port = htons(7788);
    sin.sin_addr.S_un.S_addr = INADDR_ANY;
    int nRet = bind( listenSock, (sockaddr*)&sin, (int)(sizeof(sin)));
    if ( nRet == SOCKET_ERROR )
    {
        DWORD errCode = GetLastError();
        return;
    }

    listen( listenSock, 5);

    sockaddr_in clientAddr;
    int nameLen = sizeof( clientAddr );
    while( g_totalEvent < MAX_NUM_SOCKET )
    {
        SOCKET clientSock = accept( listenSock, (sockaddr*)&clientAddr, &nameLen );
        if ( clientSock == INVALID_SOCKET )
        {
            continue;
        }
        g_SockArray[g_totalEvent] = clientSock;

        if( (g_EventArray[g_totalEvent] = WSACreateEvent()) == WSA_INVALID_EVENT )
        {
            continue;
        }

        WSAEventSelect( clientSock, g_EventArray[g_totalEvent],FD_READ | FD_CLOSE );
        g_totalEvent++;
    }
复制代码
复制代码

    线程2的处理函数如下:

复制代码
复制代码
    int nIndex = 0;
    char* recvBuffer =(char*)malloc( sizeof(char) * 1024 );

    if ( recvBuffer == NULL )
    {
    return;
    }

    memset( recvBuffer, 0, sizeof(char) * 1024 );

    while( true )
    {
        nIndex = WSAWaitForMultipleEvents( g_totalEvent, g_EventArray, FALSE, WSA_INFINITE,FALSE );
        if ( nIndex == WSA_WAIT_FAILED )
        {
            continue;
        }
        else
        { 
            WSAResetEvent( g_EventArray[ nIndex - WSA_WAIT_EVENT_0]);
            SOCKET clientSock = g_SockArray[ nIndex - WSA_WAIT_EVENT_0 ];
            WSANETWORKEVENTS wsaNetWorkEvent;

            int nRet = WSAEnumNetworkEvents( clientSock, g_EventArray[nIndex - WSA_WAIT_EVENT_0], &wsaNetWorkEvent );
            if ( SOCKET_ERROR == nRet )
            {
                continue;
            }
            else if ( wsaNetWorkEvent.lNetworkEvents & FD_READ )
            {
                if ( wsaNetWorkEvent.iErrorCode[FD_READ_BIT] != 0 )
                {
                    //occur error
                    closesocket( clientSock );
                }
                else 
                {
                    memset( recvBuffer, 0, sizeof(char) * 1024 );
                    nRet = recv( clientSock, recvBuffer, 1024, 0);
                    if ( nRet == SOCKET_ERROR )
                    {
                        closesocket( clientSock );
                    }
                    else
                    {
                        //todo:对接收到的客户端数据进行处理
                        }
                 }
             }
             else if( wsaNetWorkEvent.lNetworkEvents & FD_CLOSE )
             {
                if ( wsaNetWorkEvent.iErrorCode[FD_CLOSE_BIT] != 0 )
                {
                    //occur error
                    closesocket( clientSock );
                }
                else
                {
                    closesocket( clientSock );
                }  
             }
        }
    }

    if ( recvBuffer != NULL )
    {
        free( recvBuffer );
    }
复制代码
复制代码

 

     该模型通过一个死循环里面调用WSAWaitForMultipleEvents函数来等待客户端套接字对应的Event的到来,一旦事件通知到达,就通过该套接字去接收数据。虽然WsaEventSelect模型的实现较前两种方法复杂,但它在效率和兼容性方面是最好的。

    以上三种模型虽然在效率方面有了不少的提升,但它们都存在一个问题,就是都预设了只能接收64个客户端连接,虽然我们在实现时可以不受这个限制,但是那样,它们所带来的效率提升又将打折扣,那又有没有什么模型可以解决这个问题呢?我们的下一篇重叠I/0模型将解决这个问题

目录
相关文章
|
1月前
|
存储 网络协议 Linux
聊一聊 Python 的 socket,以及 select、poll、epoll 又是怎么一回事?
聊一聊 Python 的 socket,以及 select、poll、epoll 又是怎么一回事?
127 2
|
1月前
|
网络协议 测试技术 网络安全
Python编程-Socket网络编程
Python编程-Socket网络编程
|
4月前
|
网络协议 开发者 Python
深度探索Python Socket编程:从理论到实践,进阶篇带你领略网络编程的魅力!
【7月更文挑战第25天】在网络编程中, Python Socket编程因灵活性强而广受青睐。本文采用问答形式深入探讨其进阶技巧。**问题一**: Socket编程基于TCP/IP,通过创建Socket对象实现通信,支持客户端和服务器间的数据交换。**问题二**: 提升并发处理能力的方法包括多线程(适用于I/O密集型任务)、多进程(绕过GIL限制)和异步IO(asyncio)。**问题三**: 提供了一个使用asyncio库实现的异步Socket服务器示例,展示如何接收及响应客户端消息。通过这些内容,希望能激发读者对网络编程的兴趣并引导进一步探索。
56 4
|
4月前
|
开发者 Python
Python Socket编程:不只是基础,更有进阶秘籍,让你的网络应用飞起来!
【7月更文挑战第25天】在网络应用蓬勃发展的数字时代,Python凭借其简洁的语法和强大的库支持成为开发高效应用的首选。本文通过实时聊天室案例,介绍了Python Socket编程的基础与进阶技巧,包括服务器与客户端的建立、数据交换等基础篇内容,以及使用多线程和异步IO提升性能的进阶篇。基础示例展示了服务器端监听连接请求、接收转发消息,客户端连接服务器并收发消息的过程。进阶部分讨论了如何利用Python的`threading`模块和`asyncio`库来处理多客户端连接,提高应用的并发处理能力和响应速度。掌握这些技能,能使开发者在网络编程领域更加游刃有余,构建出高性能的应用程序。
34 3
|
4月前
|
网络协议 Python
网络世界的建筑师:Python Socket编程基础与进阶,构建你的网络帝国!
【7月更文挑战第26天】在网络的数字宇宙中,Python Socket编程是开启网络世界大门的钥匙。本指南将引领你从基础到实战,成为网络世界的建筑师。
64 2
|
4月前
|
网络协议 程序员 视频直播
|
4月前
|
消息中间件 网络协议 网络安全
Python Socket编程:打造你的专属网络通道,基础篇与进阶篇一网打尽!
【7月更文挑战第26天】在网络编程领域,Python以简洁语法和强大库支持成为构建应用的首选。Socket编程为核心,实现计算机间的数据交换。
68 1
|
4月前
|
安全 网络协议 网络安全
Python Socket编程大揭秘:从菜鸟到黑客的进阶之路,你准备好了吗?
【7月更文挑战第27天】Python Socket编程是网络开发的关键技能,它开启从简单数据传输到复杂应用的大门。Socket作为网络通信的基础,通过Python的`socket`模块可轻松实现跨网通信。
52 0
|
4月前
|
网络协议 Python
告别网络编程迷雾!Python Socket编程基础与实战,让你秒变网络达人!
【7月更文挑战第27天】在网络编程的广阔天地中,Socket编程常被视为一道难关。但用Python这把钥匙,我们可以轻松入门。Socket作为网络通信的基石,在Python中通过`socket`模块封装了底层细节,简化了开发过程。以下是一个基本的TCP服务器与客户端的示例,展示了如何建立连接、收发数据及关闭连接。为了应对实际场景中的并发需求,我们还可以借助多线程技术来提升服务器处理能力。掌握了这些基础知识后,你将逐步揭开网络编程的神秘面纱,踏上编程高手之路!
59 0
|
4月前
|
网络协议 开发者 Python
颠覆传统!Python Socket编程新思维,基础与进阶并重,打造卓越网络能力!
【7月更文挑战第25天】在数字时代,网络通信至关重要,Python的Socket编程简化了这一复杂领域,使初学者也能轻松上手。通过Python的`socket`模块,我们能快速搭建服务器与客户端,实现数据交换。示例代码展示了如何创建、绑定及监听Socket,以及收发消息。掌握基础后,可利用asyncio库探索异步编程,提升通信效率,处理多连接。Python的Socket编程,结合传统与现代技术,助力开发者在网络通信领域取得非凡成就。
73 0