Hadoop 3.x 新特性剖析系列1

简介: 1.概述   目前从Hadoop官网的Wiki来看,稳定版本已经发行到Hadoop2.9.0,最新版本为Hadoop3.1.0,查阅JIRA,社区已经着手迭代Hadoop3.2.0。那么,今天笔者就带着大家来剖析一下Hadoop3,看看它给我们带来了哪些新特性。

1.概述

  目前从Hadoop官网的Wiki来看,稳定版本已经发行到Hadoop2.9.0,最新版本为Hadoop3.1.0,查阅JIRA,社区已经着手迭代Hadoop3.2.0。那么,今天笔者就带着大家来剖析一下Hadoop3,看看它给我们带来了哪些新特性。

2. 内容

  从功能上来说,Hadoop3比Hadoop2有些功能得到了增强,具体增加了哪些,后面再讲。首先,我们来看看Hadoop3主要带来了哪些变化:

  • JDK:在Hadoop2时,可以使用JDK7,但是在Hadoop3中,最低版本要求是JDK8,所以低于JDK8的版本需要对JDK进行升级,方可安装使用Hadoop3
  • EC技术:Erasure Encoding 简称EC,是Hadoop3给HDFS拓展的一种新特性,用来解决存储空间文件。EC技术既可以防止数据丢失,又能解决HDFS存储空间翻倍的问题
  • YARN:提供YARN的时间轴服务V.2,以便用户和开发人员可以对其进行测试,并提供反馈意见,使其成为YARN Timeline Service v.1的替代品。
  • 优化Hadoop Shell脚本
  • 重构Hadoop Client Jar包
  • 支持随机Container
  • MapReduce任务级本地优化
  • 支持多个NameNode
  • 部分默认服务端口被改变
  • 支持文件系统连接器
  • DataNode内部添加了负载均衡
  • 重构后台程序和任务对管理

下面,笔者就为大家来一一剖析这些新特性的具体内容,其内容包含JDK版本、EC技术、YARN的时间轴服务这三类特性,其他特性笔者在后面的博客再为大家慢慢剖析。

2.1 JDK

  在Hadoop 3中,所有的Hadoop JAR包编译的环境都是基于Java8来完成的,所有如果仍然使用的是Java 7或者更低的版本,你可能需要升级到Java 8才能正常的运行Hadoop3。如下图所示:

 

2.2 EC技术

  首先,我们先来了解一下什么是Erasure Encoding。如下图所示:

  一般来说,在存储系统中,EC技术主要用于廉价磁盘冗余阵列,即RAID。如上图,RAID通过Stripping实现EC技术,其中逻辑顺序数据(比如:文件)被划分成更小的单元(比如:位、字节或者是块),并将连续单元存储在不同的磁盘上。

  然后,对原始数据单元的每个Stripe,计算并存储一定数量的奇偶校验单位。这个过程称之为编码,通过基于有效数据单元和奇偶校验单元的解码计算,可以恢复任意Stripe单元的错误。当我们想到了擦除编码的时候,我们可以先来了解一下在Hadoop2中复制的早期场景。如下图所示:

  HDFS默认情况下,它的备份系数是3,一个原始数据块和其他2个副本。其中2个副本所需要的存储开销各站100%,这样使得200%的存储开销,会消耗其他资源,比如网络带宽。然而,在正常操作中很少访问具有低IO活动的冷数据集的副本,但是仍然消耗与原始数据集相同的资源量。

  对于EC技术,即擦除编码存储数据和提供容错空间较小的开销相比,HDFS复制,EC技术可以代替复制,这将提供相同的容错机制,同时还减少了存储开销。如下图所示:

  EC和HDFS的整合可以保持与提供存储效率相同的容错。例如,一个副本系数为3,要复制文件的6个块,需要消耗6*3=18个块的磁盘空间。但是,使用EC技术(6个数据块,3个奇偶校验块)来部署,它只需要消耗磁盘空间的9个块(6个数据块+3个奇偶校验块)。这些与原先的存储空间相比较,节省了50%的存储开销。

  由于擦除编码需要在执行远程读取时,对数据重建带来额外的开销,因此他通常用于存储不太频繁访问的数据。在部署EC之前,用户应该考虑EC的所有开销,比如存储、网络、CPU等。

2.3 YARN的时间线V.2服务

   Hadoop引入YARN Timeline Service v.2是为了解决两个主要问题:

  1. 提高时间线服务的可伸缩性和可靠性;
  2. 通过引入流和聚合来增强可用性

  下面首先,我们来剖析一下它伸缩性。

2.3.1  伸缩性

  YARN V1仅限于读写单个实例,不能很好的扩展到小集群之外。YARN V2使用了更具有伸缩性的分布式体系架构和可扩展的后端存储,它将数据的写入与数据的读取进行了分离。并使用分布式收集器,本质上是每个YARN应用的收集器。读则是独立的实例,专门通过REST API服务来查询

2.3.2  可用性

  对于可用性的改进,在很多情况下,用户对流或者YARN应用的逻辑组的信息比较感兴趣。启动一组或者一系列的YARN应用程序来完成逻辑应用是很常见的。如下图所示:

2.3.3 架构体系

   YARN时间线服务V2采用了一组收集器写数据到后端进行存储。收集器被分配并与它们专用的应用程序主机进行协作,如下图所示,属于该应用程序的所有数据都被发送到应用程序时间轴的收集器中,但是资源管理器时间轴收集器除外。

   

 

  对于给定的应用程序,应用程序可以将数据写入同一时间轴收集器中。此外,为应用程序运行容器的其他节点的节点管理器,还会向运行应用程序主节点的时间轴收集器写入数据。资源管理器还维护自己的时间手机线收集器,它只发布YARN的通用生命周期事件,以保持其写入量合理。时间的读取器是单独的守护进程从收集器中分离出来的,它旨在服务于REST API查询操作。

3.总结

  本篇博客先给大家剖析前面几个特性,其内容由JDK的版本升级、EC技术的作用及优势、YARN的时间轴V2版本的主要作用。Hadoop3后面的几个特性,在下一篇博客为大家再剖析。

4.结束语

  这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

联系方式:
邮箱:smartloli.org@gmail.com
Twitter: https://twitter.com/smartloli
QQ群(Hadoop - 交流社区1): 424769183
温馨提示:请大家加群的时候写上加群理由(姓名+公司/学校),方便管理员审核,谢谢!

热爱生活,享受编程,与君共勉!


作者:哥不是小萝莉 [关于我][犒赏

出处:http://www.cnblogs.com/smartloli/

转载请注明出处,谢谢合作!

目录
相关文章
|
6月前
|
存储 分布式计算 Hadoop
Hadoop 3.x版本的新特性
【6月更文挑战第18天】
213 2
|
分布式计算 Hadoop Java
Hadoop 3.x 新特性剖析系列2
1.概述 接着上一篇博客的内容,继续介绍Hadoop3的其他新特性。其内容包含:优化Hadoop Shell脚本、重构Hadoop Client Jar包、支持等待Container、MapReduce任务级别本地优化、支持多个NameNode、部分默认服务端口被改变、支持文件系统连接器、DataNode内部添加负载均衡、重构后台程序和任务堆管理。
1717 0
|
2月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
188 6
|
2月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
80 2
|
4天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
30 4
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
114 2
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
80 1
|
2月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
79 1
|
2月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
87 5
|
2月前
|
资源调度 数据可视化 大数据
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
38 4

相关实验场景

更多