Invoice Application Backend Using ApsaraDB for MongoDB

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: In part three of this three-part tutorial, we will explore how to create the backend of a fully functional invoice application using ApsaraDB for MongoDB.

By Sai Sarath Chandra, Alibaba Cloud Tech Share Author and Alibaba Cloud MVP

In our previous tutorial, we have created the UI for our Invoice Application. However, as discussed in our first article, desktop applications face the risk of losing valuable data.

Therefore, we will be using Alibaba Cloud’s ApsaraDB for MongoDB to save our data onto the cloud. By storing your data on the cloud, you can use this data across applications like Android, iOS, and web applications, as well as obtain the data at any time. Alibaba Cloud ensures that the data is readily available every time. You can also leverage the Automatic Elastic Scaling provided by Alibaba Cloud to suit your business at any time.

Setting Up the Application Backend

Now we will discuss on the backend we are creating for the invoicing Application.

The API we are creating are based on Node server & ExpressJS framework.

Clone the code at https://github.com/saichandu415/Electron-Invoice-ApsaraDB-MongoDB and Naviagate to “Invoice_Backend” folder. Open the file using your favorite text editor.

There are only 2 files for our interest:

  • Package.json
    This file holds all the information regarding the dependencies, such as development dependencies.
  • Server.js
    This is the key file where we write the logic. In production scenarios it is recommended to use the frameworks like Loopback to have a high-performance API with much more control.

In Package.json, we have a standard set of dependencies:

  • Sprint-JS, mongoDB, node-UUID, formidable – for connecting to the database and creating the URL’s at runtime
  • Express and body-parser – are used to create the API’s and get the incoming request in a JSON format.

In Server.js, we have the following code

 http.createServer(app).listen(443, function () {
  console.log('Server for Invoice Backend running on port 443!');
});

The above Is the standard set of way to create a http server listening at 443 for requests. Make sure you have the below imports before starting off.

const bodyParser = require("body-parser");
const express = require("express");
const app = express();
var uuid = require('node-uuid');
var http = require('http');
var fs = require('fs');
var sprintf = require("sprintf-js").sprintf;
var mongoClient = require('mongodb').MongoClient;

All these imports are needed for the application to perform normally.

app.use(bodyParser.json());

This line above will unparses the body information which we send into json format before it goes through the Database else it results in an error.

Here I am using console in that way you can see the information as soon as the application passes the console.log() line and understands what’s happening here. In production it is not advisable to have console statements. Instead you will have a proper logging format to achieve the same.

// ApsaraDB for MongoDB related configurations
var host1 = "dds-6gj540e0c157941.mongodb.ap-south-7.rds.aliyuncs.com";
var port1 = 3012;
var host2 = "dds-6gj54080c157942.mongodb.ap-south-7.rds.aliyuncs.com";
var port2 = 3012;
var username = "root";
var password = "Mongodb@12345";
var replSetName = "mgset-1050000641";
var demoDb = "admin";

Your MongoDB related information needs to go through here to connect and perform operations on your database.

app.post('/data/invoice', (req, res) => {
  console.log(req.body);   
  var saveData = saveInvoiceData(req.body); 
  saveData.then(function(dbResponse){
    console.log(dbResponse);
    res.status(201).send(dbResponse);

  },function(err){
    console.log(err);
    res.status(400).send(err);
  });
});

This is the post operation which happens when they click the submit button on the application. Internally, it calls the saveInvoiceData.

The saveInvoiceData method will connect to DB, authenticate, and finds collection and pushes data into the DB.

function saveInvoiceData(collectionData) {

  console.log(collectionData);
  return new Promise(function (resolve, reject) {
    // Logic to fetch from the MongoDB
    mongoClient.connect(url, function (err, db) {
      //if error console error
      console.log(err);
      if (err) {
        // Database not connected : error thrown
        console.error("connect err:", err);
        reject(err);
      } else {
        //Database connected successfully, get the DB Object
        var adminDb = db.admin();
        //Authenticate Database
        adminDb.authenticate(username, password, function (err, result) {
          if (err) {
            console.log("authenticate err:", JSON.stringyfy(err));
            reject(err);
          } else {
            console.log('Authenticated : ', JSON.stringify(result));
            // Get the Collection handle.
            var collection = db.collection("saleData");
            collection.insertOne(collectionData,function(err,result){
              if(err){
                reject(err);
              }else{
                resolve(result);
              }
            });
          }
        });
      }
    });
  });
}

The method receives a collectionData json object. And the other information is obvious from the method comments. Notice here that the data is pushed into the collection “saleData”

The below is the GET method for getting the data related for the dashboards

app.get('/data/dashboard', (req, res) => {
  var getData = getDashboardData();
  getData.then(function(result){
    res.status(200).send(result);
  },function(err){
    console.log(err);
    res.status(400).send(err);
  });
});

The GET method calls the “getDashboardData()” to fetch the data & process it and creates a response.

function getDashboardData() {

  return new Promise(function (resolve, reject) {
    // Logic to fetch from the MongoDB
    mongoClient.connect(url, function (err, db) {
      //if error console error
      console.log(err);
      if (err) {
        // Database not connected : error thrown
        console.error("connect err:", err);
        reject(err);
      } else {
        //Database connected successfully, get the DB Object
        var adminDb = db.admin();
        //Authenticate Database
        adminDb.authenticate(username, password, function (err, result) {
          if (err) {
            console.log("authenticate err:", JSON.stringyfy(err));
            reject(err);
          } else {
            console.log('Authenticated : ', JSON.stringify(result));
            // Get the Collection handle.
            var collection = db.collection("saleData");
            collection.find({}).toArray(function (err, items) {
              if (err) {
                console.error('Unable to find data' + JSON.stringify(err));
              } else {
                console.info('data Fetched from MongoDB');
                var response = {}; 

                var datesArr = [];
                var salesArr = [];
                var ordersArr = [];

                var i =0;
                for(i=0; i<5; i++){
                  var totalSales = 0;
                var totalOrders = 0;
                  var d = new Date();
                  d.setDate(d.getDate() - i);
                  var month = d.getMonth() + 1;
                  var day = d.getDate();
                  var output = d.getFullYear() + '/' + (month < 10 ? '0' : '') + month + '/' + (day < 10 ? '0' : '') + day;
                  datesArr.push(output);
                console.log("In Loop 1 : "+i);
                  for(var k=0; k<items.length; k++){
                    var item = items[k];
                    if(item.invoiceDate == output){
                      totalSales = totalSales + item.totalAmount;
                      totalOrders = totalOrders+1;
                    }
                  }
                  salesArr.push(totalSales);
                  ordersArr.push(totalOrders);
                }
                response.datesArr = datesArr;
                response.salesArr = salesArr;
                response.ordersArr = ordersArr;
                resolve(response);
              }
            });
          }
        });
      }
    });
  });
}

There is a lot going in here. If you hit the below mentioned URI, you will see the following information.

Request : GET
http:// VM IP : PORT>/data/dashboard

Response :

{
    "datesArr": [
        "2018/03/25",
        "2018/03/24",
        "2018/03/23",
        "2018/03/22",
        "2018/03/21"
    ],
    "salesArr": [
        0,
        4197.3,
        34,
        0,
        0
    ],
    "ordersArr": [
        0,
        1,
        1,
        0,
        0
    ]
}

In the getInvoiceData(), once the database is connected, data is authenticated and fetched from collection. The method will run a loop to check the number of orders and total sale value for the last 5 days from the current data, and pushes the data into corresponding arrays.

The above mentioned response is sent to the /GET method so it will run a for loop on the entire data and constructs the response into corresponding arrays, Since this will be a CPU intensive task we have externalized it to the middleware deployed on an Alibaba Cloud ECS instance.

Previously, you need to integrate your application into the endpoint to make sure the data you receive will be in a proper format. I have used postman, which is a simple client for that purpose.

POSTMAN

The below is the screenshot of postman window

1

  • You can call have different methods like GET, POST, PUT, PATCH, DELETE
  • There is a URI/address bar which also accepts the query parameters.
  • Click the send button to make the request and get the response.
  • You can explore more about this, you can run test cases or peak performance testing. This is a free tool you can use it for commercial purposes.

Deploying the API

You should already have an Alibaba Cloud ECS set up. You can check out other tutorials on creating an ECS instance if you aren't sure about it.

Creating MongoDB instance:
1.You need to activate the ApsaraDB for MongoDB in your Alibaba Cloud console.
2.Navigate to the ApsaraDB for MongoDB console and choose the appropriate zone.
3.Click on Create Instance.
4.Carefully select all the infrastructure related configurations like RAM and Bandwidth.
5.If you are using a password, keep it carefully for future use/ reference. We will be using in our code for authentication.
6.Preview and create the instance by accepting the terms and conditions.
7.Once your instance is created, navigate to the details of the instance and Whitelist your ECS instance IP.
8.Once you navigate to whitelisting rules you will see Import ECS IP button. Upon clicking on the button, the ECS Intranet IP will be imported automatically.
9.In a few seconds, you should be able to see the “Connection String” appearing on the console. You can use this information to connect GUI MongoDB Clients to the ApsaraDB for MongoDB.
10.The other individual information is needed to connect the MongoDB through the code. Make sure you replace this information in the code to connect to your database.

Running the Code

After you copy the code to the ECS instance, you have to run the following commands for successful execution:

1.Npm install
a.This package downloads and installs all the required packages from the npm repository
2.Npm start / node app.js
a.This will run the application and once the server is started, you should be able to invoke the API.

Conclusion

During this articles we have seen what is Electron JS? We have also created the user interface along with Backend API. We also saw how we can leverage the ApsaraDB for MongoDB for desktop applications which provide value addition to the product we are creating for our customers.

The whole code is provided in the github repository. If you have question about something please raise the same as an issue at the following link:

https://github.com/saichandu415/Electron-Invoice-ApsaraDB-MongoDB

If think you can improve the code, please raise it as a pull request.

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。 &nbsp; 相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
目录
相关文章
|
JSON 弹性计算 NoSQL
AMP for E-Commerce Part 3: Integrating the Entire Application with Alibaba Cloud ApsaraDB for MongoDB
In this three-part tutorial, we will explore how to create a fully functional e-commerce mobile application using AMP.
1823 0
AMP for E-Commerce Part 3: Integrating the Entire Application with Alibaba Cloud ApsaraDB for MongoDB
|
1月前
|
存储 关系型数据库 MySQL
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB区别,适用场景
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景比较
|
2月前
|
存储 NoSQL 关系型数据库
非关系型数据库-MongoDB技术(二)
非关系型数据库-MongoDB技术(二)
|
2月前
|
NoSQL 关系型数据库 MongoDB
非关系型数据库-MongoDB技术(一)
非关系型数据库-MongoDB技术(一)
|
3月前
|
运维 监控 NoSQL
【MongoDB 复制集秘籍】Secondary 同步慢怎么办?深度解析与实战指南,让你的数据库飞速同步!
【8月更文挑战第24天】本文通过一个具体案例探讨了MongoDB复制集中Secondary成员同步缓慢的问题。现象表现为数据延迟增加,影响业务运行。经分析,可能的原因包括硬件资源不足、网络状况不佳、复制日志错误等。解决策略涵盖优化硬件(如增加内存、升级CPU)、调整网络配置以减少延迟以及优化MongoDB配置(例如调整`oplogSize`、启用压缩)。通过这些方法可有效提升同步效率,保证系统的稳定性和性能。
92 4
|
24天前
|
NoSQL Cloud Native atlas
探索云原生数据库:MongoDB Atlas 的实践与思考
【10月更文挑战第21天】本文探讨了MongoDB Atlas的核心特性、实践应用及对云原生数据库未来的思考。MongoDB Atlas作为MongoDB的云原生版本,提供全球分布式、完全托管、弹性伸缩和安全合规等优势,支持快速部署、数据全球化、自动化运维和灵活定价。文章还讨论了云原生数据库的未来趋势,如架构灵活性、智能化运维和混合云支持,并分享了实施MongoDB Atlas的最佳实践。
|
25天前
|
NoSQL Cloud Native atlas
探索云原生数据库:MongoDB Atlas 的实践与思考
【10月更文挑战第20天】本文探讨了MongoDB Atlas的核心特性、实践应用及对未来云原生数据库的思考。MongoDB Atlas作为云原生数据库服务,具备全球分布、完全托管、弹性伸缩和安全合规等优势,支持快速部署、数据全球化、自动化运维和灵活定价。文章还讨论了实施MongoDB Atlas的最佳实践和职业心得,展望了云原生数据库的发展趋势。
|
27天前
|
存储 NoSQL MongoDB
MongoDB 数据库引用
10月更文挑战第20天
17 1
|
1月前
|
存储 NoSQL Shell
MongoDB 创建数据库
10月更文挑战第12天
53 4
|
1月前
|
存储 NoSQL MongoDB
基于阿里云数据库MongoDB版,微财数科“又快又稳”服务超7000万客户
选择MongoDB主要基于其灵活的数据模型、高性能、高可用性、可扩展性、安全性和强大的分析能力。
下一篇
无影云桌面