大数据和机器学习 > 大数据计算 MaxCompute > 正文

DRDS到MaxCompute(原ODPS)数据归档性能优化测试

简介:
+关注继续查看

一、cdp同步基本原理
数据集成(Data Integration)是阿里巴巴集团提供的数据同步平台。该平台具备可跨异构数据存储系统、可靠、安全、低成本、可弹性扩展等特点,可为 20 多种数据源提供不同网络环境下的离线(全量/增量)数据进出通道。数据源类型的详情请参见 支持数据源类型。
数据集成的原理:
数据集成在阿里云上提供一套分布式离线数据同步平台,同时提供一套抽象化的数据抽取插件(称之为Reader)、数据写入插件(称之为Writer),并基于此框架设计一套简化版的中间数据传输格式,从而达到任意结构化、半结构化数据源之间数据传输之目的。从用户角度来看,一个数据集成同步任务运行Job示意图如下所示:
image

上述中,红色虚箭头是代表通过collector状态收集器监控数据返回到脏数据管理服务器进行数据分析,灰色方向箭头代表数据流向。DI Service主要是包含资源管理器、Job管理器、脏数据管理器、分布式服务、鉴权服务等。Job Container主要是将数据集成运行任务分成若干个task,然后通过scheduler调度管理。TaskGroup Container主要是数据抽取通过数据通道(channel)将数据写入。
• 使用数据集成Job启动API,向数据集成服务端发起调用,提交一个离线数据同步Job。
• 数据集成收到Job API请求后,将负责做必要的安全和权限校验,待校验通过后,数据集成会下发相应的Job到执行集群节点启动离线数据同步任务。
• Job启动后,根据您提供的源端(Reader)、目的端(Writer)的配置信息,加载并初始化相关插件,连接两端数据源,开始数据同步工作。
• Job运行过程中,将随心跳向数据集成汇报当前进度、速度、数据量等关键运行指标,可根据Job的状态API实时获取该Job运行状态,直至Job运行结束(成功或者失败)。

流程概述
image

步骤1:数据源端新建表。
步骤2:新增数据源。
步骤3:向导模式或脚本模式配置同步任务。
步骤4:运行同步任务,检查目标端的数据质量。

因为DRDS不支持存储过程,造一张实际生产的表有些复杂,所以采用通过RDS创建表数据,再导入到DRDS的方式
二、测试表准备:
通过RDS新建一张实际生产的表,数据量为一亿行左右(主键为自增)
通过存储结构插入数据(业务只需要天数是随机的):
delimiter

dropprocedurehuayu2;CREATEPROCEDUREhuayu2()begindeclarevarint;setvar=0;whilevar<100000000doinsertintotpcsbillrecievehuayutestselectnull,1234567,210025002110010114117029000016,0,null,0,null,null,null,0,0,null,null,0,null,null,null,21100101,null,null,null,null,null,null,null,21002500,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,CONCAT(2018,,03,,LPAD(FLOOR(1+(RAND()31)),2,0),′′,14:54:04),null,null,2017111014:54:04,null,null,null,2,4,null,null,null,null,null,0,null,null,null,null,null;setvar=var+1;endwhile;enddropprocedurehuayu2;CREATEPROCEDUREhuayu2()begindeclarevarint;setvar=0;whilevar<100000000doinsertintotpcsbillrecievehuayutestselectnull,1234567,210025002110010114117029000016,0,null,0,null,null,null,0,0,null,null,0,null,null,null,21100101,null,null,null,null,null,null,null,21002500,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,CONCAT(2018,′−′,′03′,′−′,LPAD(FLOOR(1+(RAND()∗31)),2,0),″,′14:54:04′),null,null,′2017−11−1014:54:04′,null,null,null,2,4,null,null,null,null,null,0,null,null,null,null,null;setvar=var+1;endwhile;end

delimiter

三、测试要求
通过mysqldump在DRDS新建导入的表,以天为分表键,分表键的值是随机分布在3月1日-3月31日的。
将源表按分表键做拆分,1天拆成1个任务,并发向目标表里进行同步,同时目标表按天做分区,找到最佳并发量。
注意:分库键的选择为自增主键,不能是固定,否则hash的时候只落在一个库里面,分表键也是随机的日期,这样数据就能均衡的分布在各个库里面
四、具体实施步骤
1、将RDS的表导入到测试环境DRDS
mysqldump –urds_xncs_qps8 –p –P3306 –h 10.1.1.1 database test1 –t > /home/hy.sql

这里加上了-t参数,目的是不备份表的结构,这样做的好处是,导入到DRDS的时候,在DRDS端建一个相同名字的数据库,并且可以自定义分库分表键,这样就省略了再次去修改备份的.sql文件而达到分库分表的目的。当然,如果只是需要一个单表,那就复制表结构跟数据就好了

2、 将复制的表数据导入到DRDS
2.1、 通过mysql -udrds_uat_pcs –P3306 –h10.3.3.3 drds_uat_pcs -p < /home/hy.slq
2.2、 进入到目标表所在的数据库,执行source /home/hy.sql
这两种方式大同小异,第一种稍微快些,第二种会有过程在屏幕上展示。习惯用第二种

在刚开始导入的时候会一些报错,但是对实际的导入不会影响

3、具体测试
数据量:

mysql> select count(*) from t_pcs_bill_recieve_huayutest ;
count(*)
78322075

1、 一个工作流,分十个同步任务执行,
每个同步任务where条件对应3天,每一个同步任务对应一个分区,共10个分区
最大速率上线10M/s,
结构图:

image

各个任务耗时:
1、========================================================================
任务启动时刻 : 2018-03-28 11:47:15 任务结束时刻 : 2018-03-28 11:57:28 任务总计耗时 : 612s 任务平均流量 : 1.69MB/s 记录写入速度 : 20753rec/s 读出记录总数 : 12638734 读写失败总数 : 0
2、========================================================================
任务启动时刻 : 2018-03-28 11:47:15 任务结束时刻 : 2018-03-28 11:56:18 任务总计耗时 : 543s 任务平均流量 : 1.14MB/s 记录写入速度 : 14038rec/s 读出记录总数 : 7580943 读写失败总数 : 0
3、========================================================================
任务启动时刻 : 2018-03-28 11:47:17 任务结束时刻 : 2018-03-28 11:56:23 任务总计耗时 : 545s 任务平均流量 : 1.14MB/s 记录写入速度 : 14004rec/s 读出记录总数 : 7576202 读写失败总数 : 0
4、========================================================================
任务启动时刻 : 2018-03-28 11:47:17 任务结束时刻 : 2018-03-28 11:56:26 任务总计耗时 : 548s 任务平均流量 : 1.13MB/s 记录写入速度 : 13933rec/s 读出记录总数 : 7579645 读写失败总数 : 0
5、========================================================================
任务启动时刻 : 2018-03-28 11:47:10 任务结束时刻 : 2018-03-28 11:56:17 任务总计耗时 : 546s 任务平均流量 : 1.14MB/s 记录写入速度 : 13979rec/s 读出记录总数 : 7576799 读写失败总数 : 0
6、========================================================================
任务启动时刻 : 2018-03-28 11:47:15 任务结束时刻 : 2018-03-28 11:56:28 任务总计耗时 : 553s 任务平均流量 : 1.12MB/s 记录写入速度 : 13774rec/s 读出记录总数 : 7575981 读写失败总数 : 0
7、========================================================================
任务启动时刻 : 2018-03-28 11:47:17 任务结束时刻 : 2018-03-28 11:56:18 任务总计耗时 : 541s 任务平均流量 : 1.15MB/s 记录写入速度 : 14115rec/s 读出记录总数 : 7579924 读写失败总数 : 0
8、========================================================================
任务启动时刻 : 2018-03-28 11:47:17 任务结束时刻 : 2018-03-28 11:56:18 任务总计耗时 : 541s 任务平均流量 : 1.15MB/s 记录写入速度 : 14115rec/s 读出记录总数 : 7579924 读写失败总数 : 0

9、========================================================================
任务启动时刻 : 2018-03-28 11:47:15 任务结束时刻 : 2018-03-28 11:56:27 任务总计耗时 : 551s 任务平均流量 : 1.13MB/s 记录写入速度 : 13856rec/s 读出记录总数 : 7579604 读写失败总数 : 0
10、========================================================================
任务启动时刻 : 2018-03-28 11:47:17 任务结束时刻 : 2018-03-28 11:55:20 任务总计耗时 : 482s 任务平均流量 : 877.38KB/s 记录写入速度 : 10522rec/s 读出记录总数 : 5050713 读写失败总数 : 0

整体耗时:630秒

 ![image](https://yqfile.alicdn.com/8d8f3acb4098f6860aa698d56277bcdbf9c4f975.png)

2、 一个工作流,分五个同步任务执行,
每个同步任务where条件对应6天,每一个同步任务对应一个分区,共5个分区
最大速率上线10M/s,
结构图:

image

任务同步耗时:
1、========================================================================
任务启动时刻 : 2018-03-28 14:27:49 任务结束时刻 : 2018-03-28 14:37:42 任务总计耗时 : 593s 任务平均流量 : 2.09MB/s 记录写入速度 : 25605rec/s 读出记录总数 : 15158472 读写失败总数 : 0
2、========================================================================
任务启动时刻 : 2018-03-28 14:27:53 任务结束时刻 : 2018-03-28 14:37:36 任务总计耗时 : 583s 任务平均流量 : 2.12MB/s 记录写入速度 : 26093rec/s 读出记录总数 : 15160230 读写失败总数 : 0
3、========================================================================
任务启动时刻 : 2018-03-28 14:27:43 任务结束时刻 : 2018-03-28 14:37:33 任务总计耗时 : 589s 任务平均流量 : 2.10MB/s 记录写入速度 : 25775rec/s 读出记录总数 : 15156082 读写失败总数 : 0
4、========================================================================
任务启动时刻 : 2018-03-28 14:27:45 任务结束时刻 : 2018-03-28 14:37:36 任务总计耗时 : 591s 任务平均流量 : 2.10MB/s 记录写入速度 : 25729rec/s 读出记录总数 : 15154873 读写失败总数 : 0
5、========================================================================
任务启动时刻 : 2018-03-28 14:27:43 任务结束时刻 : 2018-03-28 14:38:01 任务总计耗时 : 617s 任务平均流量 : 2.34MB/s 记录写入速度 : 28768rec/s 读出记录总数 : 17692418 读写失败总数 : 0

整体耗时:629秒

image

3、 一个工作流,分十五个同步任务执行,
每个同步任务where条件对应2天,每一个同步任务对应一个分区,共15个分区
最大速率上线10M/s,
结构图:

 ![image](https://yqfile.alicdn.com/068c1c56b16baa1c3cc270eb286f7d46ff1a8990.png)

总体耗时:623秒

image

4、 一个工作流,分一个同步任务执行
最大速率上线10M/s,
结构图:
image

同步任务耗时:
任务启动时刻 : 2018-03-28 15:42:05 任务结束时刻 : 2018-03-28 15:57:16 任务总计耗时 : 910s 任务平均流量 : 7.02MB/s 记录写入速度 : 86257rec/s 读出记录总数 : 78322075 读写失败总数 : 0

总耗时:928秒
image

5、 一个工作流,分三个同步任务执行
最大速率上线10M/s,
结构图:

image

总耗时:699秒

image

6、 一个工作流,分四个同步任务执行
最大速率上线10M/s,
结构图:

image

总耗时:672秒
image

测试结果:

                            
并发数    10        5        15       1        3       4    
总耗时    630秒    629秒    623秒    928秒    699秒    672秒    
                            
                            
并发数    1         3        4        5        10       15    
总耗时    928秒    699秒    672秒    629秒    630秒    623秒    
                            

初步结论:
在并发为5、10、15的情况下,同步数据的速率基本没有变化630秒左右,在并发为1、2、3、4的情况下,速率由930秒提升到630秒左右,从而可以得出结论,在并发为5的情况下,同步速率已经达到最大,再增加并发对于速率的增加效果不明显。


转自袋鼠云

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
使用DataWorks将PolarDB-X中的数据同步到MaxCompute
MaxCompute是适用于数据分析场景的云数据仓库,适用于大型互联网企业的数据仓库和BI分析、网站的日志分析、电子商务网站的交易分析、用户特征和兴趣挖掘等。大数据开发治理平台 DataWorks 基于MaxCompute / EMR / MC-Hologres 等大数据计算引擎,为客户提供专业高效、安全可靠的一站式大数据开发与治理平台。本文介绍 PolarDB-X 与 MaxCompute 系统的快速对接方式,方便您对在线业务数据进行大数据分析。
117 0
dataworks同步maxcompute数据到ES,geo_point 类型写入测试
dataworks同步maxcompute数据到ES,geo_point 类型写入测试
169 0
阿里云-数仓 数据开发神器-ODPS(MaxCompute)的组成对象
阿里云-数仓 数据开发神器-ODPS(MaxCompute)的组成对象
347 0
MaxCompute+DataWorks 最佳实践(三)|学习笔记
快速学习 MaxCompute+DataWorks 最佳实践
176 0
MaxCompute+DataWorks最佳实践(二)|学习笔记
快速学习 MaxCompute+DataWorks最佳实践
145 0
基于MaxCompute、DataWorks和PAI构建企业数据中台经验分享
关于数据中台的构建我在之前的文章中有过多次分享,本篇文章主要聚焦基于阿里云大数据平台构建企业数据中台的经验反馈。
418 0
【MaxCompute 常见问题】 PyODPS
1. PyODPS数据类型如何设置? 如果您使用 PyODPS,可以通过下列方法打开新数据类型开关: 如果通过 execute_sql 方式打开新数据类型,可以执行 o.execute_sql('setodps.sql.type.system.odps2=true;query_sql', hints={"od ps.sql.submit.mode" : "script"})。 如果通过 Dataframe 打开新数据类型
861 0
DataWorks_数据开发_EMR Spark节点_计算Pi和对接MaxCompute案例
DataWorks_数据开发_EMR Spark节点 1)计算Pi; 2)对接MaxCompute。
380 0
阿里云Dataworks数据集成工具实现:OTS -> Maxcompute数据同步
数据集成主要用于离线(批量)数据同步。离线(批量)的数据通道通过定义数据来源和去向的数据源和数据集,提供一套抽象化的数据抽取插件(Reader)、数据写入插件(Writer),并基于此框架设计一套简化版的中间数据传输格式,从而实现任意结构化、半结构化数据源之间数据传输。结合用户在使用OTS数据源同步的时候容易出现问题,这里演示:OTS数据源同步数据到Maxcompute的具体实现步骤。
993 0
MaxCompute(原ODPS)是一项面向分析的大数据计算服务,它以Serverless架构提供快速、全托管的在线数据仓库服务,消除传统数据平台在资源扩展性和弹性方面的限制,最小化用户运维投入,使您经济并高效的分析处理海量数据。
热门文章
热门讨论
+关注
隐林
阿里云大数据产品专家,擅长MaxCompute、机器学习、分布式、可视化、人工智能等大数据领域;
文章
问答
视频
相关电子书
更多
DataWorks调度任务迁移最佳实践-2020飞天大数据平台实战应用第一季
立即下载
低代码开发师(初级)实战教程
立即下载
阿里巴巴DevOps 最佳实践手册
立即下载