开源大数据周刊-第85期

简介: 资讯 美国公布长达35页的《2016-2045年新兴科技趋势报告》, Hadoop社区最新动态

资讯

前段时间美国公布的一份长达35页的《2016-2045年新兴科技趋势报告》。该报告是在美国过去五年内由政府机构、咨询机构、智囊团、科研机构等发表的32份科技趋势相关研究调查报告的基础上提炼形成的。

通过对近700项科技趋势的综合比对分析,最终明确了20项最值得关注的科技发展趋势。

Apache HBase PMC主席Michael Stack在Mail List中宣布了HBase 2.0版本已正式Release的消息,该版本可以说是迄今为止最大的一个版本。一起来看看HBase 2.0的一些新特性以及与HBase 1.0的兼容性问题等。

近日,eBay 宣布正式开源 Accelerator,一款久经考验的数据处理框架,提供快速的数据访问,并行执行以及自动组织源码、输入数据和结果。它可以用于日常数据分析,也可以用在包含数十万大型数据文件的实时推荐系统上。

技术

在深度学习训练过程中,需要对大量参数进行优化,目前主流的优化方法主要有 SGD、Adam、RMSProp 等。尽管这些方法已经被广泛的使用,但在许多方面仍需改进。近日,谷歌团队提出一种新的优化方法 Adafactor,针对目前主流优化方法存在的问题进行改进,对比其他优化算法在机器翻译任务上取了的目前最好的结果。本文对这一成果进行了解读。

Uber 的数据架构团队对Hadoop整个架构进行了彻底仔细的检查和分析,对相应的模块进行了持续的改进和优化。具体方向包括: View File System (ViewFs),快速的 HDFS 版本升级,NameNode 垃圾回收 调优,限制系统中小文件数量,提供了 HDFS 加载管理服务,以及增加了一个 NameNode 的只读副本。本文针对上述内容进行一个详细介绍,看 Uber 是如何构建一个快速增长的、稳定的,并且可靠的存储系统的。

Spark Streaming集成了Kafka允许用户从Kafka中读取一个或者多个topic的数据。一个Kafka topic包含多个存储消息的分区(partition)。每个分区中的消息是顺序存储,并且用offset(可以认为是位置)来标记消息。开发者可以在他的Spark Streaming应用中通过offset来控制数据的读取位置,但是这需>要好的offset的管理机制。本文详细讲解了Offsets管理的集中方式。

时序数据库技术体系中一个非常重要的技术点是时序数据模型设计,不同的时序系统有不同的设计模式,而不同的设计模式对时序数据的读写性能、数据压缩效率等各个方面都有非常重要的影响。这篇文章将会分别针对OpenTSDB、Druid、InfluxDB以及Beringei这四个时序系统中的时序数据模型设计进行介绍。

相关文章
|
数据可视化 大数据 定位技术
GIS:开源webgl大数据地图类库整理
GIS:开源webgl大数据地图类库整理
673 0
|
分布式计算 大数据 Serverless
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
在2024云栖大会开源大数据专场上,阿里云宣布推出实时计算Flink产品的新一代向量化流计算引擎Flash,该引擎100%兼容Apache Flink标准,性能提升5-10倍,助力企业降本增效。此外,EMR Serverless Spark产品启动商业化,提供全托管Serverless服务,性能提升300%,并支持弹性伸缩与按量付费。七猫免费小说也分享了其在云上数据仓库治理的成功实践。其次 Flink Forward Asia 2024 将于11月在上海举行,欢迎报名参加。
876 6
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
|
存储 机器学习/深度学习 大数据
参与开源大数据Workshop·杭州站,共探企业湖仓演进实践
Apache Flink 诚邀您参加 7 月 27 日在杭州举办的阿里云开源大数据 Workshop,了解流式湖仓、湖仓一体架构的最近演进方向,共探企业云上湖仓实践案例。
346 12
参与开源大数据Workshop·杭州站,共探企业湖仓演进实践
|
机器学习/深度学习 监控 大数据
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持
|
机器学习/深度学习 分布式计算 大数据
MaxCompute 2.0:开源系统的集成与创新
增强实时处理能力:进一步加强与Flink等实时处理框架的合作。 强化机器学习支持:提供更多内置的机器学习算法和工具。 增强数据治理功能:提供更完善的数据质量和安全治理方案。
|
存储 分布式计算 Hadoop
【专栏】Hadoop,开源大数据处理框架:驭服数据洪流的利器
【4月更文挑战第28天】Hadoop,开源大数据处理框架,由Hadoop Common、HDFS、YARN和MapReduce组成,提供大规模数据存储和并行处理。其优势在于可扩展性、容错性、高性能、灵活性及社区支持。然而,数据安全、处理速度、系统复杂性和技能短缺是挑战。通过加强安全措施、结合Spark、自动化工具和培训,Hadoop在应对大数据问题中保持关键地位。
432 1
|
SQL 存储 监控
构建端到端的开源现代数据平台
构建端到端的开源现代数据平台
843 4
|
关系型数据库 分布式数据库 数据处理
【PolarDB 开源】PolarDB 在大数据分析中的应用:海量数据处理方案
【5月更文挑战第25天】PolarDB是解决大数据挑战的关键技术,以其高性能和可扩展性处理大规模数据。通过与数据采集和分析工具集成,构建高效数据生态系统。示例代码显示了PolarDB如何用于查询海量数据。优化策略包括数据分区、索引、压缩和分布式部署,广泛应用于电商、金融等领域,助力企业进行精准分析和决策。随着大数据技术进步,PolarDB将继续发挥关键作用,创造更多价值。
484 0
|
SQL 存储 大数据
从0到1介绍一下开源大数据服务平台dataService
从0到1介绍一下开源大数据服务平台dataService
1283 1
|
关系型数据库 大数据 分布式数据库
PolarDB 开源版 使用PostGIS 数据寻龙点穴(空间聚集分析)- 大数据与GIS分析解决线下店铺选址问题
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版 使用PostGIS 数据寻龙点穴(空间聚集分析)-...
759 0