CUDA从入门到精通(六):块并行

简介: 同一版本的代码用了这么多次,有点过意不去,于是这次我要做较大的改动,大家要擦亮眼睛,拭目以待。   块并行相当于操作系统中多进程的情况,上节说到,CUDA有线程组(线程块)的概念,将一组线程组织到一起,共同分配一部分资源,然后内部调度执行。

同一版本的代码用了这么多次,有点过意不去,于是这次我要做较大的改动大笑,大家要擦亮眼睛,拭目以待。

 

块并行相当于操作系统中多进程的情况,上节说到,CUDA有线程组(线程块)的概念,将一组线程组织到一起,共同分配一部分资源,然后内部调度执行。线程块与线程块之间,毫无瓜葛。这有利于做更粗粒度的并行。我们将上一节的代码改为块并行版本如下:

 

#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size);
__global__ void addKernel(int *c, const int *a, const int *b)
{
    int i = blockIdx.x;
    c[i] = a[i] + b[i];
}
int main()
{
    const int arraySize = 5;
    const int a[arraySize] = { 1, 2, 3, 4, 5 };
    const int b[arraySize] = { 10, 20, 30, 40, 50 };
    int c[arraySize] = { 0 };
    // Add vectors in parallel.
    cudaError_t cudaStatus;
	int num = 0;
	cudaDeviceProp prop;
	cudaStatus = cudaGetDeviceCount(&num);
	for(int i = 0;i<num;i++)
	{
		cudaGetDeviceProperties(&prop,i);
	}
	cudaStatus = addWithCuda(c, a, b, arraySize);
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "addWithCuda failed!");
        return 1;
    }
    printf("{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n",c[0],c[1],c[2],c[3],c[4]);
    // cudaThreadExit must be called before exiting in order for profiling and
    // tracing tools such as Nsight and Visual Profiler to show complete traces.
    cudaStatus = cudaThreadExit();
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaThreadExit failed!");
        return 1;
    }
    return 0;
}
// Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda(int *c, const int *a, const int *b, size_t size)
{
    int *dev_a = 0;
    int *dev_b = 0;
    int *dev_c = 0;
    cudaError_t cudaStatus;

    // Choose which GPU to run on, change this on a multi-GPU system.
    cudaStatus = cudaSetDevice(0);
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");
        goto Error;
    }
    // Allocate GPU buffers for three vectors (two input, one output)    .
    cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaMalloc failed!");
        goto Error;
    }
    cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaMalloc failed!");
        goto Error;
    }
    cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaMalloc failed!");
        goto Error;
    }
    // Copy input vectors from host memory to GPU buffers.
    cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaMemcpy failed!");
        goto Error;
    }
    cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaMemcpy failed!");
        goto Error;
    }
    // Launch a kernel on the GPU with one thread for each element.
    addKernel<<<size,1 >>>(dev_c, dev_a, dev_b);
    // cudaThreadSynchronize waits for the kernel to finish, and returns
    // any errors encountered during the launch.
    cudaStatus = cudaThreadSynchronize();
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaThreadSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
        goto Error;
    }
    // Copy output vector from GPU buffer to host memory.
    cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
    if (cudaStatus != cudaSuccess) 
	{
        fprintf(stderr, "cudaMemcpy failed!");
        goto Error;
    }
Error:
    cudaFree(dev_c);
    cudaFree(dev_a);
    cudaFree(dev_b);    
    return cudaStatus;
}


和上一节相比,只有这两行有改变,<<<>>>里第一个参数改成了size,第二个改成了1,表示我们分配size个线程块,每个线程块仅包含1个线程,总共还是有5个线程。这5个线程相互独立,执行核函数得到相应的结果,与上一节不同的是,每个线程获取id的方式变为int i = blockIdx.x;这是线程块ID。

 

于是有童鞋提问了,线程并行和块并行的区别在哪里?

线程并行是细粒度并行,调度效率高;块并行是粗粒度并行,每次调度都要重新分配资源,有时资源只有一份,那么所有线程块都只能排成一队,串行执行。

那是不是我们所有时候都应该用线程并行,尽可能不用块并行?

当然不是,我们的任务有时可以采用分治法,将一个大问题分解为几个小规模问题,将这些小规模问题分别用一个线程块实现,线程块内可以采用细粒度的线程并行,而块之间为粗粒度并行,这样可以充分利用硬件资源,降低线程并行的计算复杂度。适当分解,降低规模,在一些矩阵乘法、向量内积计算应用中可以得到充分的展示。

 

实际应用中,常常是二者的结合。线程块、线程组织图如下所示。

 

多个线程块组织成了一个Grid,称为线程格(经历了从一位线程,二维线程块到三维线程格的过程,立体感很强啊)。

 

好了,下一节我们介绍流并行,是更高层次的并行。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
Unix 异构计算 Windows
带你读《基于CUDA的GPU并行程序开发指南》之一:CPU并行编程概述
本书旨在帮助读者了解与基于CUDA的并行编程技术有关的基本概念,并掌握实用c语言进行GPU高性能编程的相关技巧。本书第一部分通过CPU多线程编程解释了并行计算,使得没有太多并行计算基础的读者也能毫无阻碍地进入CUDA天地;第二部分重点介绍了基于CUDA的GPU大规模并行程序的开发与实现,并通过大量的性能分析帮助读者理解如何开发一个好的GPU并行程序以及GPU架构对程序性能的影响;本书的第三部分介绍了一些常用的CUDA库。
|
并行计算
CUDA 动态并行 【读书笔记】
CUDA 动态并行 【读书笔记】
107 0
CUDA 动态并行 【读书笔记】
|
内存技术 程序员 异构计算
带你读《基于CUDA的GPU并行程序开发指南》之三:改进第一个CPU并行程序
本书旨在帮助读者了解与基于CUDA的并行编程技术有关的基本概念,并掌握实用c语言进行GPU高性能编程的相关技巧。本书第一部分通过CPU多线程编程解释了并行计算,使得没有太多并行计算基础的读者也能毫无阻碍地进入CUDA天地;第二部分重点介绍了基于CUDA的GPU大规模并行程序的开发与实现,并通过大量的性能分析帮助读者理解如何开发一个好的GPU并行程序以及GPU架构对程序性能的影响;本书的第三部分介绍了一些常用的CUDA库。
|
异构计算 Windows 存储
带你读《基于CUDA的GPU并行程序开发指南》之二:开发第一个CPU并行程序
本书旨在帮助读者了解与基于CUDA的并行编程技术有关的基本概念,并掌握实用c语言进行GPU高性能编程的相关技巧。本书第一部分通过CPU多线程编程解释了并行计算,使得没有太多并行计算基础的读者也能毫无阻碍地进入CUDA天地;第二部分重点介绍了基于CUDA的GPU大规模并行程序的开发与实现,并通过大量的性能分析帮助读者理解如何开发一个好的GPU并行程序以及GPU架构对程序性能的影响;本书的第三部分介绍了一些常用的CUDA库。