FastReport微调

简介: 在设计器中View->Options中调整Grid的大小默认为0.1mm,调成0.01后可以进行微调

在设计器中View->Options中调整Grid的大小默认为0.1mm,调成0.01后可以进行微调

目录
相关文章
|
8月前
|
并行计算 Linux 计算机视觉
还在手工标注数据集?快来试一试自动化多模型标注大模型-gui交互式标注(部署运行教程-高效生产力)
还在手工标注数据集?快来试一试自动化多模型标注大模型-gui交互式标注(部署运行教程-高效生产力)
|
人工智能 JSON 自然语言处理
大模型Prompt工程的重要性及构建方法
非常非常有用的一片宝藏文章,主要阐述了大模型prompt构建的一些基础方法,能够起到很好的帮助,本文转载至https://mp.weixin.qq.com/s/7X68fNdOOYfk5Qg9iEM2lA,该公众号的其他文章也很有用,推荐大家关注。
|
4月前
|
人工智能 自然语言处理 机器人
【Prompt Engineering 提示词工程指南】​文本概括、信息提取、问答、文本分类、对话、代码生成、推理​
本文介绍了使用提示词与大语言模型(LLM)交互的基础知识。通过调整参数如温度(Temperature)、最高概率词元(Top_p)、最大长度(Max Length)及停止序列(Stop Sequences),可以优化模型输出。温度参数影响结果的随机性;Top_p 控制结果的多样性;最大长度限制输出长度;停止序列确保输出符合预期结构。此外,频率惩罚(Frequency Penalty)和存在惩罚(Presence Penalty)可减少重复词汇,提升输出质量。提示词需包含明确指令、上下文信息、输入数据及输出指示,以引导模型生成理想的文本。设计提示词时应注重具体性、避免歧义,并关注模型的具体行为
544 1
|
4月前
|
机器学习/深度学习 数据可视化 UED
黑匣子被打开了!能玩的Transformer可视化解释工具,本地运行GPT-2、还可实时推理
【9月更文挑战第4天】Transformer Explainer是一款基于网页的交互式可视化工具,专为帮助用户理解复杂的Transformer模型而设计。通过多层次抽象、实时推理及互动实验,以及无需安装即可使用的便捷性,此工具选取GPT-2作为教学模型,降低了学习门槛并提升了教育普及度。用户可以通过输入自定义文本观察预测过程,深入了解内部组件的工作原理。此外,它还减少了认知负荷,增强了互动学习体验。未来,该工具将在复杂性管理和性能优化方面继续改进,并通过用户研究进一步提升功能和可用性。[论文地址:https://arxiv.org/pdf/2408.04619]
120 1
|
5月前
|
机器学习/深度学习 自然语言处理 数据可视化
LlamaFactory可视化微调大模型 - 参数详解
LlamaFactory可视化微调大模型 - 参数详解
627 4
|
6月前
|
弹性计算 运维 自然语言处理
Prompt工程问题之prompt工程的语言选定如何解决
Prompt工程问题之prompt工程的语言选定如何解决
73 0
|
机器学习/深度学习 人工智能 数据可视化
【网安AIGC专题10.19】论文4:大模型(CODEX 、CodeGen 、INCODER )+自动生成代码评估:改进自动化测试方法、创建测试输入生成器、探索新的评估数据集扩充方法
【网安AIGC专题10.19】论文4:大模型(CODEX 、CodeGen 、INCODER )+自动生成代码评估:改进自动化测试方法、创建测试输入生成器、探索新的评估数据集扩充方法
502 1
|
6月前
|
人工智能 新制造
商业上怎么合理运用提示工程,RAG和模型微调
商业上怎么合理运用提示工程,RAG和模型微调
|
8月前
|
机器学习/深度学习 自然语言处理
【大模型】如何处理微调LLM来编写创意内容?
【5月更文挑战第7天】【大模型】如何处理微调LLM来编写创意内容?
|
存储 Java API
【网安AIGC专题11.7】17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集(下)
【网安AIGC专题11.7】17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集(下)
178 0