WebSocket的C++服务器端实现

本文涉及的产品
云解析DNS,个人版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: 由于需要在项目中增加Websocket协议,与客户端进行通信,不想使用开源的库,比如WebSocketPP,就自己根据WebSocket协议实现一套函数,完全使用C++实现。代码已经实现,放在个人github上面,地址:https://github.com/jice1001/websocket.git。

由于需要在项目中增加Websocket协议,与客户端进行通信,不想使用开源的库,比如WebSocketPP,就自己根据WebSocket协议实现一套函数,完全使用C++实现。

代码已经实现,放在个人github上面,地址:https://github.com/jice1001/websocket.git。下面进行解释说明:

一、原理

  Websocket协议解析,已经在前面博客里面详细讲解过,可以参考博客http://www.cnblogs.com/jice1990/p/5435419.html,这里就不详细细说。

服务器端实现就是使用TCP协议,使用传统的socket流程进行绑定监听,使用epoll控制多路并发,收到Websocket握手包时候进行握手处理,握手成功便可进行数据收发。

二、实现

  1、服务器监听

  该部分使用的是TCP socket流程,首先是通过socket函数建立socket,通过bind函数绑定到某个端口,本例使用的是9000,然后通过listen函数开启监听,代码如下:

复制代码
    listenfd_ = socket(AF_INET, SOCK_STREAM, 0);
    if(listenfd_ == -1){
        DEBUG_LOG("创建套接字失败!");
        return -1;
    }
    struct sockaddr_in server_addr;
    memset(&server_addr, 0, sizeof(sockaddr_in));
    server_addr.sin_family = AF_INET;
    server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
    server_addr.sin_port = htons(PORT);
    if(-1 == bind(listenfd_, (struct sockaddr *)(&server_addr), sizeof(server_addr))){
        DEBUG_LOG("绑定套接字失败!");
        return -1;
    }
    if(-1 == listen(listenfd_, 5)){
        DEBUG_LOG("监听失败!");
        return -1;
    }
复制代码

  2、epoll控制多路并发

  该部分使用的是epoll流程,首先在初始化时候使用epoll_create创建epoll句柄

epollfd_ = epoll_create(1024);

  然后通过epoll_wait等待fd事件来临,当监听到是listenfd事件时候,说明是客户端连接服务器,就使用accept接受连接,然后注册该连接EPOLLIN事件,当epoll监听到EPOLLIN事件时候,即可进行握手和数据读取。代码如下:

复制代码
void ctl_event(int fd, bool flag){
    struct epoll_event ev;
    ev.data.fd = fd;
    ev.events = flag ? EPOLLIN : 0;
    epoll_ctl(epollfd_, flag ? EPOLL_CTL_ADD : EPOLL_CTL_DEL, fd, &ev);
    if(flag){
        set_noblock(fd);
        websocket_handler_map_[fd] = new Websocket_Handler(fd);
        if(fd != listenfd_)
            DEBUG_LOG("fd: %d 加入epoll循环", fd);
    }
    else{
        close(fd);
        delete websocket_handler_map_[fd];
        websocket_handler_map_.erase(fd);
        DEBUG_LOG("fd: %d 退出epoll循环", fd);
    }
}
复制代码
复制代码
int epoll_loop(){
    struct sockaddr_in client_addr;
    socklen_t clilen;
    int nfds = 0;
    int fd = 0;
    int bufflen = 0;
    struct epoll_event events[MAXEVENTSSIZE];
    while(true){
        nfds = epoll_wait(epollfd_, events, MAXEVENTSSIZE, TIMEWAIT);
        for(int i = 0; i < nfds; i++){
            if(events[i].data.fd == listenfd_){
                fd = accept(listenfd_, (struct sockaddr *)&client_addr, &clilen);
                ctl_event(fd, true);
            }
            else if(events[i].events & EPOLLIN){
                if((fd = events[i].data.fd) < 0)
                    continue;
                Websocket_Handler *handler = websocket_handler_map_[fd];
                if(handler == NULL)
                    continue;
                if((bufflen = read(fd, handler->getbuff(), BUFFLEN)) <= 0){
                    ctl_event(fd, false);
                }
                else{
                    handler->process();
                }
            }
        }
    }

    return 0;
}
复制代码

  3、Websocket握手连接

  握手部分主要是根据Websocket握手包进行解析,然后根据Sec-WebSocket-Key进行SHA1哈希,生成相应的key,返回给客户端,与客户端进行握手。代码如下:

复制代码
//该函数是获取websocket握手包的信息,按照分割字符进行解析
int fetch_http_info(){ std::istringstream s(buff_); std::string request; std::getline(s, request); if (request[request.size()-1] == '\r') { request.erase(request.end()-1); } else { return -1; } std::string header; std::string::size_type end; while (std::getline(s, header) && header != "\r") { if (header[header.size()-1] != '\r') { continue; //end } else { header.erase(header.end()-1); //remove last char } end = header.find(": ",0); if (end != std::string::npos) { std::string key = header.substr(0,end); std::string value = header.substr(end+2); header_map_[key] = value; } } return 0; }
复制代码
复制代码
//该函数是根据websocket返回包的格式拼接相应的返回包
void parse_str(char *request){ strcat(request, "HTTP/1.1 101 Switching Protocols\r\n"); strcat(request, "Connection: upgrade\r\n"); strcat(request, "Sec-WebSocket-Accept: "); std::string server_key = header_map_["Sec-WebSocket-Key"]; server_key += MAGIC_KEY; SHA1 sha; unsigned int message_digest[5]; sha.Reset(); sha << server_key.c_str(); sha.Result(message_digest); for (int i = 0; i < 5; i++) { message_digest[i] = htonl(message_digest[i]); } server_key = base64_encode(reinterpret_cast<const unsigned char*>(message_digest),20); server_key += "\r\n"; strcat(request, server_key.c_str()); strcat(request, "Upgrade: websocket\r\n\r\n"); }
复制代码

  4、数据读取

  当服务器与客户端握手成功后,就可以进行正常的通信,读取数据了。使用的是TCP协议的方法,解析Websocket包根据协议格式,在前面博客里面有详细分析,这里只把实现代码贴出来。

复制代码
int fetch_websocket_info(char *msg){
    int pos = 0;
    fetch_fin(msg, pos);
    fetch_opcode(msg, pos);
    fetch_mask(msg, pos);
    fetch_payload_length(msg, pos);
    fetch_masking_key(msg, pos);
    return fetch_payload(msg, pos);
}

int fetch_fin(char *msg, int &pos){
    fin_ = (unsigned char)msg[pos] >> 7;
    return 0;
}

int fetch_opcode(char *msg, int &pos){
    opcode_ = msg[pos] & 0x0f;
    pos++;
    return 0;
}

int fetch_mask(char *msg, int &pos){
    mask_ = (unsigned char)msg[pos] >> 7;
    return 0;
}

int fetch_masking_key(char *msg, int &pos){
    if(mask_ != 1)
        return 0;
    for(int i = 0; i < 4; i++)
        masking_key_[i] = msg[pos + i];
    pos += 4;
    return 0;
}

int fetch_payload_length(char *msg, int &pos){
    payload_length_ = msg[pos] & 0x7f;
    pos++;
    if(payload_length_ == 126){
        uint16_t length = 0;
        memcpy(&length, msg + pos, 2);
        pos += 2;
        payload_length_ = ntohs(length);
    }
    else if(payload_length_ == 127){
        uint32_t length = 0;
        memcpy(&length, msg + pos, 4);
        pos += 4;
        payload_length_ = ntohl(length);
    }
    return 0;
}

int fetch_payload(char *msg, int &pos){
    memset(payload_, 0, sizeof(payload_));
    if(mask_ != 1){
        memcpy(payload_, msg + pos, payload_length_);
    }
    else {
        for(uint i = 0; i < payload_length_; i++){
            int j = i % 4;
            payload_[i] = msg[pos + i] ^ masking_key_[j];
        }
    }
    pos += payload_length_;
    return 0;
}
复制代码

  5、总结

  到此为止,完整实现了使用C++对Websocket协议进行解析,握手,数据收发,不借助开源库就实现了websocket相关功能,最大程度的与项目保存兼容。

相关文章
|
定位技术 C++
C++实现俄罗斯方块(附代码)
C++实现俄罗斯方块(附代码)
C++实现俄罗斯方块(附代码)
|
机器学习/深度学习 C++
C++实现实现逆时针旋转矩阵
C++实现实现逆时针旋转矩阵
C++实现实现逆时针旋转矩阵
|
编译器 C++ 容器
【C++要笑着学】迭代器适配器 | 内嵌类型实现反向迭代器 | 迭代器萃取
上一章讲解 list 模拟实现时,我们简单的提到了反向迭代器,我们说反向迭代器其实就是对正向迭代器的一种封装 —— 适配器模式(配接器模式)。当时我们做的是简单的了解,本章我们就来探讨这一部分的知识。
130 1
【C++要笑着学】迭代器适配器 | 内嵌类型实现反向迭代器 | 迭代器萃取
|
存储 C++
C++异常处理机制由浅入深, 以及函数调用汇编过程底层刨析. C++11智能指针底层模拟实现
C++异常处理机制由浅入深, 以及函数调用汇编过程底层刨析. C++11智能指针底层模拟实现
C++异常处理机制由浅入深, 以及函数调用汇编过程底层刨析. C++11智能指针底层模拟实现
|
存储 Linux C语言
生产者消费者模式保姆级教程 (阻塞队列解除耦合性) 一文帮你从C语言版本到C++ 版本, 从理论到实现 (一文足以)
生产者消费者模式保姆级教程 (阻塞队列解除耦合性) 一文帮你从C语言版本到C++ 版本, 从理论到实现 (一文足以)
生产者消费者模式保姆级教程 (阻塞队列解除耦合性) 一文帮你从C语言版本到C++ 版本, 从理论到实现 (一文足以)
|
设计模式 安全 定位技术
C++从面试常考实现特殊类到单例模式的实现
C++从面试常考实现特殊类到单例模式的实现
C++从面试常考实现特殊类到单例模式的实现
|
存储 Java 应用服务中间件
线程池设计, 从简单的我们平常设计线程池图解,到生活中的类似线程池的处理现实场景, 到简单的C++模拟nginx写的单链表组织工作队列的简单线程池实现 + nginx 部分源码刨析
线程池设计, 从简单的我们平常设计线程池图解,到生活中的类似线程池的处理现实场景, 到简单的C++模拟nginx写的单链表组织工作队列的简单线程池实现 + nginx 部分源码刨析
线程池设计, 从简单的我们平常设计线程池图解,到生活中的类似线程池的处理现实场景, 到简单的C++模拟nginx写的单链表组织工作队列的简单线程池实现 + nginx 部分源码刨析
如何用c++实现异常处理
如何用c++实现异常处理
如何用c++实现异常处理
|
存储 算法 C++
分块刨析从函数原型到分块实现C++STL(vector)
分块刨析从函数原型到分块实现C++STL(vector)
分块刨析从函数原型到分块实现C++STL(vector)
|
C++
C/C++ Qt Tree与Tab组件实现分页菜单
虽然`TreeWidget`组件可以实现多节点的增删改查,但多节点操作显然很麻烦,在一般的应用场景中基本上只使用一层结构即可解决大部分开发问题,`TreeWidget`组件通常可配合`TabWidget`组件,实现一个类似于树形菜单栏的功能,当用户点击菜单栏中的选项时则会跳转到不同的页面上。
307 0
C/C++ Qt Tree与Tab组件实现分页菜单