JVM快速调优手册v1.0之三:内存分配策略

简介: 内存分配策略   了解GC其中很重要一点就是了解JVM的内存分配策略:即对象在哪里分配和对象什么时候回收。 Java技术体系中所提倡的自动内存管理可以归结于两个部分:给对象分配内存以及回收分配给对象的内存。

内存分配策略

 

了解GC其中很重要一点就是了解JVM的内存分配策略:即对象在哪里分配和对象什么时候回收

Java技术体系中所提倡的自动内存管理可以归结于两个部分:给对象分配内存以及回收分配给对象的内存。 
我们都知道,Java对象分配,都是在Java堆上进行分配的,虽然存在JIT编译后被拆分为标量类型并简介地在栈上进行分配。如果采用分代算法,那么新生的对象是分配在新生代的Eden区上的。如果启动了本地线程分配缓冲,将按线程优先在TLAB上进行分配。 
事实上,Java的分配规则不是百分百固定的,其取决于当前使用的是哪一种垃圾收集器组合,还有虚拟机中与内存相关的参数的设置。 

简单来说,对象内存分配主要是在堆中分配。但是分配的规则并不是固定的,取决于使用的收集器组合以及JVM内存相关参数的设
下面SerialSerial Old收集器做一个内存分配和回收的策略总结。

1.对象优先在新生代Eden分配

首先,让我们来看一下新生代的内存分配情况: 
内存分配情况: 
JVM内存划分为一块较大的Eden空间(80%)和两块小的Servivor(各占10%)。当回收时,将EdenSurvivor中还存活的对象一次性采用复制算法直接复制到另外一块Servivor空间上,最后清理到院Eden空间和原先的Survivor空间中的数据。 
大多数情况下,对象在新生代Eden区中分配。当Eden区没有足够空间进行分配时,JVM将发起一次Minor GC 
在这里先说明两个概念:

·         新生代GCMinor GC):指发生在新生代的垃圾收集动作,因为Java对象大多是具有朝生夕灭的特性,所以Minor GC非常频繁,而且该速度也比较快。

·         老年代GCMajor GC/Full GC):指发生在老年代的GC,出现了Major GC,一般可能也会伴随着一次Minor GC,但是与Minor GC不同的是,Major GC的速度慢十倍以上。

2.大对象直接进入老年代

我们先对所谓的大对象做一个定义:大对象,这里指的是需要大量连续内存空间的Java对象。最典型的大对象可以是很长的字符串和数组。 
JVM
对大对象的态度: 
大对象对于JVM的内存分配来说是十分麻烦的,如果我们将大对象分配在新生代中,那样子的话很容易导致内存还有不少空间时就提前触发垃圾收集以获取足够的连续空间来安置它们。、 
为了避免上述情况的经常发生而导致不需要的GC活动所浪费的资源和时间,可采用的分配策略是将大对象直接分配到老年代中去,虚拟机中也提供了-XX:PretenureSizeThreshold参数,令大于这个设置值的对象直接在老年代里面分配内容。

-XX:PretenureSizeThreshold只对SerialParNew收集器有

3.长期存活的对象将进入老年代

JVM采用分代收集的思想来管理内存时,为了识别哪些对象应该放在新生代、哪些对象应该放在老年代,JVM给每个对象定义了一个对象年龄计数器。 
对象年龄计数器:如果对象在Eden出生并经过第一次Minor GC后仍然存活,并且能被Survivor容纳的话,便可以被移动到Survivor空间中,年龄计数器将设置该对象的年龄为1.对于对象在Survivor区每经过一次Minor GC,年龄便增加1岁,当它的年龄增加到一定程度(可通过参数-XX:MaxTenuringThreshold设置)默认15,该对象便会进入到老年代中。成为老年代的对象。

4.动态对象年龄判定

事实上,有的虚拟机并不永远地要求对象的年龄必须达到MaxTeruringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Surivior空间的一半,年龄大于或等于该年龄的对象就可以直接进行老年代,无须等到MaxTeruringThreshold中所要求的年龄。

5.空间分配担保

在发生Minor GC之前,虚拟机会先检查老年代中最大的可用的连续空间是否大于新生代中所有对象总空间,如果这个条件成立,那么Minor GC可以确保是安全的,如果不成立,则虚拟机会查看HandlePromotionFaiure设置值是否允许担保失败。如果允许,那么会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试进行一次Minor GC,尽管这次GC是有风险的;如果小于,或者HandlePromotionFaiure设置不允许冒险,那么这时就要改为进行一次Full GC 
所谓冒险:也就是说当用来轮转的Survivor区无法承受新生代中所存活的对象内存时,需要老年代进行分配担保,把Survivor无法容纳的对象直接进入老年代中,前提是老年代中

目录
相关文章
|
21天前
|
监控 算法 Java
Java虚拟机(JVM)垃圾回收机制深度剖析与优化策略####
本文作为一篇技术性文章,深入探讨了Java虚拟机(JVM)中垃圾回收的工作原理,详细分析了标记-清除、复制算法、标记-压缩及分代收集等主流垃圾回收算法的特点和适用场景。通过实际案例,展示了不同GC(Garbage Collector)算法在应用中的表现差异,并针对大型应用提出了一系列优化策略,包括选择合适的GC算法、调整堆内存大小、并行与并发GC调优等,旨在帮助开发者更好地理解和优化Java应用的性能。 ####
26 0
|
18天前
|
监控 架构师 Java
Java虚拟机调优的艺术:从入门到精通####
本文作为一篇深入浅出的技术指南,旨在为Java开发者揭示JVM调优的神秘面纱,通过剖析其背后的原理、分享实战经验与最佳实践,引领读者踏上从调优新手到高手的进阶之路。不同于传统的摘要概述,本文将以一场虚拟的对话形式,模拟一位经验丰富的架构师向初学者传授JVM调优的心法,激发学习兴趣,同时概括性地介绍文章将探讨的核心议题——性能监控、垃圾回收优化、内存管理及常见问题解决策略。 ####
|
18天前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
20天前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
27天前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80
|
25天前
|
监控 Java 编译器
Java虚拟机调优指南####
本文深入探讨了Java虚拟机(JVM)调优的精髓,从内存管理、垃圾回收到性能监控等多个维度出发,为开发者提供了一系列实用的调优策略。通过优化配置与参数调整,旨在帮助读者提升Java应用的运行效率和稳定性,确保其在高并发、大数据量场景下依然能够保持高效运作。 ####
27 1
|
27天前
|
存储 算法 Java
JVM进阶调优系列(10)敢向stop the world喊卡的G1垃圾回收器 | 有必要讲透
本文详细介绍了G1垃圾回收器的背景、核心原理及其回收过程。G1,即Garbage First,旨在通过将堆内存划分为多个Region来实现低延时的垃圾回收,每个Region可以根据其垃圾回收的价值被优先回收。文章还探讨了G1的Young GC、Mixed GC以及Full GC的具体流程,并列出了G1回收器的核心参数配置,帮助读者更好地理解和优化G1的使用。
|
28天前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
232 1
|
2月前
|
存储 安全 Java
jvm 锁的 膨胀过程?锁内存怎么变化的
【10月更文挑战第3天】在Java虚拟机(JVM)中,`synchronized`关键字用于实现同步,确保多个线程在访问共享资源时的一致性和线程安全。JVM对`synchronized`进行了优化,以适应不同的竞争场景,这种优化主要体现在锁的膨胀过程,即从偏向锁到轻量级锁,再到重量级锁的转变。下面我们将详细介绍这一过程以及锁在内存中的变化。
43 4
|
28天前
|
Java
JVM运行时数据区(内存结构)
1)虚拟机栈:每次调用方法都会在虚拟机栈中产生一个栈帧,每个栈帧中都有方法的参数、局部变量、方法出口等信息,方法执行完毕后释放栈帧 (2)本地方法栈:为native修饰的本地方法提供的空间,在HotSpot中与虚拟机合二为一 (3)程序计数器:保存指令执行的地址,方便线程切回后能继续执行代码
21 3