MongoDB复制集同步原理解析

本文涉及的产品
云原生多模数据库 Lindorm,多引擎 多规格 0-4节点
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: MongoDB副本集数据同步主要包含2个步骤intial sync,可以理解为全量同步replication,追同步源的oplog,可以理解为增量同步本文是对MongoDB高

MongoDB副本集数据同步主要包含2个步骤

  1. intial sync,可以理解为全量同步
  2. replication,追同步源的oplog,可以理解为增量同步

本文是对MongoDB高可用复制集原理的补充,会详细介绍MongoDB数据同步的实现原理。

initial sync

Secondary节点当出现如下状况时,需要先进行全量同步

  1. oplog为空
  2. local.replset.minvalid集合里_initialSyncFlag字段设置为true
  3. 内存标记initialSyncRequested设置为true

这3个场景分别对应

  1. 新节点加入,无任何oplog,此时需先进性initial sync
  2. initial sync开始时,会主动将_initialSyncFlag字段设置为true,正常结束后再设置为false;如果节点重启时,发现_initialSyncFlag为true,说明上次全量同步中途失败了,此时应该重新进行initial sync
  3. 当用户发送resync命令时,initialSyncRequested会设置为true,此时会重新开始一次initial sync

intial sync流程

  1. 全量同步开始,设置minvalid集合的_initialSyncFlag
  2. 获取同步源上最新oplog时间戳为t1
  3. 全量同步集合数据 (耗时)
  4. 获取同步源上最新oplog时间戳为t2
  5. 重放[t1, t2]范围内的所有oplog
  6. 获取同步源上最新oplog时间戳为t3
  7. 重放[t2, t3]范围内所有的oplog
  8. 建立集合所有索引 (耗时)
  9. 获取同步源上最新oplog时间戳为t4
  10. 重放[t3, t4]范围内所有的oplog
  11. 全量同步结束,清除minvalid集合的_initialSyncFlag

Replication

initial sync结束后,接下来Secondary就会『不断拉取主上新产生的oplog并重放』,这个过程在Secondary同步慢问题分析也介绍过,这里从另一个角度再分析下。

  • producer thread,这个线程不断的从同步源上拉取oplog,并加入到一个BlockQueue的队列里保存着。
  • replBatcher thread,这个线程负责逐个从producer thread的队列里取出oplog,并放到自己维护的队列里。
  • sync线程将replBatcher thread的队列分发到默认16个replWriter线程,由replWriter thread来最终重放每条oplog。

问题来了,为什么一个简单的『拉取oplog并重放』的动作要搞得这么复杂?

性能考虑,拉取oplog是单线程进行,如果把重放也放到拉取的线程里,同步势必会很慢;所以设计上producer thread只干一件事。
AI 代码解读

为什么不将拉取的oplog直接分发给replWriter thread,而要多一个replBatcher线程来中转?

oplog重放时,要保持顺序性,而且遇到createCollection、dropCollection等DDL命令时,这些命令与其他的增删改查命令是不能并行执行的,而这些控制就是由replBatcher来完成的。
AI 代码解读

注意事项

  • initial sync单线程复制数据,效率比较低,生产环境应该尽量避免initial sync出现,需合理配置oplog,按默认『5%的可用磁盘空间』来配置oplog在绝大部分场景下都能满足需求,特殊的case(case1, case2)可根据实际情况设置更大的oplog。
  • 新加入节点时,可以通过物理复制的方式来避免initial sync,将Primary上的dbpath拷贝到新的节点,直接启动,这样效率更高。
  • 当Secondary上需要的oplog在同步源上已经滚掉时,Secondary的同步将无法正常进行,会进入RECOVERING的状态,需向Secondary主动发送resyc命令重新同步。3.2版本目前有个bug,可能导致resync不能正常工作,必须强制(kill -9)重启节点,详情参考SERVER-24773
  • 生产环境,最好通过db.printSlaveReplicationInfo()来监控主备同步滞后的情况,当Secondary落后太多时,要及时调查清楚原因。
  • 当Secondary同步滞后是因为主上并发写入太高导致,(db.serverStatus().metrics.repl.buffer.sizeBytes持续接近db.serverStatus().metrics.repl.buffer.maxSizeBytes),可通过调整Secondary上replWriter并发线程数来提升。
相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
目录
打赏
0
1
0
3
9969
分享
相关文章
HashMap深度解析:从原理到实战
HashMap,作为Java集合框架中的一个核心组件,以其高效的键值对存储和检索机制,在软件开发中扮演着举足轻重的角色。作为一名资深的AI工程师,深入理解HashMap的原理、历史、业务场景以及实战应用,对于提升数据处理和算法实现的效率至关重要。本文将通过手绘结构图、流程图,结合Java代码示例,全方位解析HashMap,帮助读者从理论到实践全面掌握这一关键技术。
116 14
深入解析云计算中的微服务架构:原理、优势与实践
深入解析云计算中的微服务架构:原理、优势与实践
143 3
解析静态代理IP改善游戏体验的原理
静态代理IP通过提高网络稳定性和降低延迟,优化游戏体验。具体表现在加快游戏网络速度、实时玩家数据分析、优化游戏设计、简化更新流程、维护网络稳定性、提高连接可靠性、支持地区特性及提升访问速度等方面,确保更流畅、高效的游戏体验。
60 22
解析静态代理IP改善游戏体验的原理
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
本期内容为「ximagine」频道《显示器测试流程》的规范及标准,我们主要使用Calman、DisplayCAL、i1Profiler等软件及CA410、Spyder X、i1Pro 2等设备,是我们目前制作内容数据的重要来源,我们深知所做的仍是比较表面的活儿,和工程师、科研人员相比有着不小的差距,测试并不复杂,但是相当繁琐,收集整理测试无不花费大量时间精力,内容不完善或者有错误的地方,希望大佬指出我们好改进!
67 16
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
详细介绍SpringBoot启动流程及配置类解析原理
通过对 Spring Boot 启动流程及配置类解析原理的深入分析,我们可以看到 Spring Boot 在启动时的灵活性和可扩展性。理解这些机制不仅有助于开发者更好地使用 Spring Boot 进行应用开发,还能够在面对问题时,迅速定位和解决问题。希望本文能为您在 Spring Boot 开发过程中提供有效的指导和帮助。
23 12
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
探索阿里云 Flink 物化表:原理、优势与应用场景全解析
阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。
125 16
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
184 3
Vue.js响应式原理深度解析:从Vue 2到Vue 3的演进
Vue.js响应式原理深度解析:从Vue 2到Vue 3的演进
122 17
深入解析区块链技术的核心原理与应用前景
深入解析区块链技术的核心原理与应用前景
113 0

相关产品

  • 云数据库 MongoDB 版
  • 推荐镜像

    更多