T​o​m​的​r​u​n​s​t​a​t

简介: 1. 授权相应的视图权限grant select on v_$statname to rudy ;grant select on v_$mystat to rudy ;gra...

1. 授权相应的视图权限

grant select on v_$statname to rudy ;

grant select on v_$mystat to rudy ;

grant select on v_$latch  to rudy ;

grant select on v_$timer to rudy ;

2. 创建临时表

CREATE OR REPLACE VIEW STATS
AS
  SELECT 'STAT...'
         ||A.NAME NAME,
         B.VALUE
  FROM   V$STATNAME A,
         V$MYSTAT B
  WHERE  A.STATISTIC# = B.STATISTIC#
  UNION ALL
  SELECT 'LATCH.'
         ||NAME,
         GETS
  FROM   V$LATCH
  UNION ALL
  SELECT 'STAT...Elapsed Time',
         HSECS
  FROM   V$TIMER;

3.创建临时表

CREATE GLOBAL TEMPORARY TABLE RUN_STATS (
  RUNID VARCHAR2(15),
  NAME  VARCHAR2(80),
  VALUE INT) ON COMMIT PRESERVE ROWS;
4.创建相应的runstat包
CREATE OR REPLACE PACKAGE RUNSTATS_PKG
AS
  PROCEDURE RS_START;
  
  PROCEDURE RS_MIDDLE;
  
  PROCEDURE RS_STOP(P_DIFFERENCE_THRESHOLD  IN NUMBER DEFAULT 0);
END;
CREATE OR REPLACE PACKAGE BODY RUNSTATS_PKG
AS
  G_START  NUMBER;
  
  G_RUN1  NUMBER;
  
  G_RUN2  NUMBER;
  
  PROCEDURE RS_START
  IS
  BEGIN
    DELETE FROM RUN_STATS;
    
    INSERT INTO RUN_STATS
    SELECT 'before',
           STATS.*
    FROM   STATS;
    
    G_START := DBMS_UTILITY.GET_CPU_TIME;
  END;
  
  PROCEDURE RS_MIDDLE
  IS
  BEGIN
    G_RUN1 := (DBMS_UTILITY.GET_CPU_TIME - G_START);
    
    INSERT INTO RUN_STATS
    SELECT 'after 1',
           STATS.*
    FROM   STATS;
    
    G_START := DBMS_UTILITY.GET_CPU_TIME;
  END;
  
  PROCEDURE RS_STOP
       (P_DIFFERENCE_THRESHOLD  IN NUMBER DEFAULT 0)
  IS
  BEGIN
    G_RUN2 := (DBMS_UTILITY.GET_CPU_TIME - G_START);
    
    DBMS_OUTPUT.PUT_LINE('Run1 ran in '
                         ||G_RUN1
                         ||' cpu hsecs');
    
    DBMS_OUTPUT.PUT_LINE('Run2 ran in '
                         ||G_RUN2
                         ||' cpu hsecs');
    
    IF (G_RUN2 <> 0) THEN
      DBMS_OUTPUT.PUT_LINE('run 1 ran in '
                           ||ROUND(G_RUN1 / G_RUN2 * 100,2)
                           ||'% of the time');
    END IF;
    
    DBMS_OUTPUT.PUT_LINE(CHR(9));
    
    INSERT INTO RUN_STATS
    SELECT 'after 2',
           STATS.*
    FROM   STATS;
    
    DBMS_OUTPUT.PUT_LINE(RPAD('Name',30)
                         ||LPAD('Run1',12)
                         ||LPAD('Run2',12)
                         ||LPAD('Diff',12));
    
    FOR X IN (SELECT   RPAD(A.NAME,30)
                       ||TO_CHAR(B.VALUE - A.VALUE,'999,999,999')
                       ||TO_CHAR(C.VALUE - B.VALUE,'999,999,999')
                       ||TO_CHAR(((C.VALUE - B.VALUE) - (B.VALUE - A.VALUE)),
                                 '999,999,999') DATA
              FROM     RUN_STATS A,
                       RUN_STATS B,
                       RUN_STATS C
              WHERE    A.NAME = B.NAME
                       AND B.NAME = C.NAME
                       AND A.RUNID = 'before'
                       AND B.RUNID = 'after 1'
                       AND C.RUNID = 'after 2'
                       AND ABS((C.VALUE - B.VALUE) - (B.VALUE - A.VALUE)) > P_DIFFERENCE_THRESHOLD
              ORDER BY ABS((C.VALUE - B.VALUE) - (B.VALUE - A.VALUE)))
    LOOP
      DBMS_OUTPUT.PUT_LINE(X.DATA);
    END LOOP;
    
    DBMS_OUTPUT.PUT_LINE(CHR(9));
    
    DBMS_OUTPUT.PUT_LINE('Run1 latches total versus runs -- difference and pct');
    
    DBMS_OUTPUT.PUT_LINE(LPAD('Run1',12)
                         ||LPAD('Run2',12)
                         ||LPAD('Diff',12)
                         ||LPAD('Pct',10));
    
    FOR X IN (SELECT TO_CHAR(RUN1,'999,999,999')
                     ||TO_CHAR(RUN2,'999,999,999')
                     ||TO_CHAR(DIFF,'999,999,999')
                     ||TO_CHAR(ROUND(RUN1 / DECODE(RUN2,0,TO_NUMBER(0),
                                                        RUN2) * 100,2),'99,999.99')
                     ||'%' DATA
              FROM   (SELECT SUM(B.VALUE - A.VALUE) RUN1,
                             SUM(C.VALUE - B.VALUE) RUN2,
                             SUM((C.VALUE - B.VALUE) - (B.VALUE - A.VALUE)) DIFF
                      FROM   RUN_STATS A,
                             RUN_STATS B,
                             RUN_STATS C
                      WHERE  A.NAME = B.NAME
                             AND B.NAME = C.NAME
                             AND A.RUNID = 'before'
                             AND B.RUNID = 'after 1'
                             AND C.RUNID = 'after 2'
                             AND A.NAME LIKE 'LATCH%'))
    LOOP
      DBMS_OUTPUT.PUT_LINE(X.DATA);
    END LOOP;
  END;
END;
6.示例
SQL> set serveroutput on
SQL> exec runstats_pkg.rs_start;
PL/SQL procedure successfully completed

SQL> exec runstats_pkg.rs_middle;
PL/SQL procedure successfully completed

SQL> insert into t1 select level from dual connect by level <= 10000 ;
10000 rows inserted

SQL> exec runstats_pkg.rs_stop(100);
Run1 ran in 1 cpu hsecs
Run2 ran in 2 cpu hsecs
run 1 ran in 50% of the time
	
Name                                  Run1        Run2        Diff
LATCH.SQL memory manager worka         271         137        -134
STAT...session logical reads            47         181         134
STAT...db block changes                 46         186         140
STAT...Elapsed Time                    983         822        -161
LATCH.cache buffers chains             166         672         506
STAT...bytes sent via SQL*Net          882       1,778         896
STAT...bytes received via SQL*       1,942       3,920       1,978
STAT...undo change vector size       3,340      26,968      23,628
STAT...session uga memory          -28,736           0      28,736
LATCH.JS slv state obj latch             1     -32,730     -32,731
STAT...redo size                     4,420     148,316     143,896
	
Run1 latches total versus runs -- difference and pct
        Run1        Run2        Diff       Pct
       1,545     -30,854     -32,399     -5.01%
PL/SQL procedure successfully completed



目录
相关文章
|
9天前
|
存储 关系型数据库 分布式数据库
PostgreSQL 18 发布,快来 PolarDB 尝鲜!
PostgreSQL 18 发布,PolarDB for PostgreSQL 全面兼容。新版本支持异步I/O、UUIDv7、虚拟生成列、逻辑复制增强及OAuth认证,显著提升性能与安全。PolarDB-PG 18 支持存算分离架构,融合海量弹性存储与极致计算性能,搭配丰富插件生态,为企业提供高效、稳定、灵活的云数据库解决方案,助力企业数字化转型如虎添翼!
|
7天前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
本文讲解 Prompt 基本概念与 10 个优化技巧,结合学术分析 AI 应用的需求分析、设计方案,介绍 Spring AI 中 ChatClient 及 Advisors 的使用。
361 130
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
|
8天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
350 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
20天前
|
弹性计算 关系型数据库 微服务
基于 Docker 与 Kubernetes(K3s)的微服务:阿里云生产环境扩容实践
在微服务架构中,如何实现“稳定扩容”与“成本可控”是企业面临的核心挑战。本文结合 Python FastAPI 微服务实战,详解如何基于阿里云基础设施,利用 Docker 封装服务、K3s 实现容器编排,构建生产级微服务架构。内容涵盖容器构建、集群部署、自动扩缩容、可观测性等关键环节,适配阿里云资源特性与服务生态,助力企业打造低成本、高可靠、易扩展的微服务解决方案。
1338 8
|
2天前
|
存储 JSON 安全
加密和解密函数的具体实现代码
加密和解密函数的具体实现代码
190 136
|
6天前
|
监控 JavaScript Java
基于大模型技术的反欺诈知识问答系统
随着互联网与金融科技发展,网络欺诈频发,构建高效反欺诈平台成为迫切需求。本文基于Java、Vue.js、Spring Boot与MySQL技术,设计实现集欺诈识别、宣传教育、用户互动于一体的反欺诈系统,提升公众防范意识,助力企业合规与用户权益保护。
|
19天前
|
机器学习/深度学习 人工智能 前端开发
通义DeepResearch全面开源!同步分享可落地的高阶Agent构建方法论
通义研究团队开源发布通义 DeepResearch —— 首个在性能上可与 OpenAI DeepResearch 相媲美、并在多项权威基准测试中取得领先表现的全开源 Web Agent。
1435 87
|
7天前
|
JavaScript Java 大数据
基于JavaWeb的销售管理系统设计系统
本系统基于Java、MySQL、Spring Boot与Vue.js技术,构建高效、可扩展的销售管理平台,实现客户、订单、数据可视化等全流程自动化管理,提升企业运营效率与决策能力。