[Phoenix] 八、动态列

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 传统关系型数据库的动态列实现只能依赖逻辑层的设计实现,而Phoenix是HBase上的SQL层,借助HBase特性实现的动态列功能,具有高度的灵活性,告别业务逻辑层的复杂设计。

一、概要

动态列是指在查询中新增字段,操作创建表时未指定的列。传统关系型数据要实现动态列目前常用的方法有:设计表结构时预留新增字段位置、设计更通用的字段、列映射为行和利用json/xml存储字段扩展字段信息等,这些方法多少都存在一些缺陷,动态列的实现只能依赖逻辑层的设计实现。由于Phoenix是HBase上的SQL层,借助HBase特性实现的动态列,避免了传统关系型数据库动态列实现存在的问题。

二、动态列使用

示例表(用于语法说明)

CREATE TABLE EventLog (
    eventId BIGINT NOT NULL,
    eventTime TIME NOT NULL,
    eventType CHAR(3) 
    CONSTRAINT pk PRIMARY KEY (eventId, eventTime)) COLUMN_ENCODED_BYTES=0

1. Upsert

在插入数据时指定新增列字段名和类型,并在values对应的位置设置相应的值。语法如下:

upsert into <tableName>
(exists_col1, exists_col2, ... (new_col1 time, new_col2 integer, ...))
VALUES
(v1, v2, ... (v1, v2, ...))

动态列写入示例:

UPSERT INTO EventLog (eventId, eventTime, eventType, lastGCTime TIME, usedMemory BIGINT, maxMemory BIGINT) VALUES(1, CURRENT_TIME(), 'abc', CURRENT_TIME(), 512, 1024);

我们来查询看一下

Screen_Shot_2018_04_08_at_09_24_20

查询发现并没新增列的数据,也就是通过动态列插入值时并没有对表的schema直接改变。HBase表中发生了怎么样的变化呢?

Screen_Shot_2018_04_08_at_09_23_31

实际上HBase表中已经新增列以及数据。那通过动态列添加的数据怎么查询呢?

2. Select

动态列查询语法

select [*|table.*|[table.]colum_name_1[AS alias1][,[table.]colum_name_2[AS alias2] …], <dy_colum_name_1>]
FROM tableName (<dy_colum_name_1, type> [,<dy_column_name_2, type> ...])
[where clause]
[group by clause] 
[having clause]
[order by clause]

动态列查询示例

SELECT eventId, eventTime, lastGCTime, usedMemory, maxMemory FROM EventLog(lastGCTime TIME, usedMemory BIGINT, maxMemory BIGINT) where eventId=1

查询结果如下:
Screen_Shot_2018_04_08_at_10_09_46

三、总结

Phoneix的动态列功能是非SQL标准语法,它给我们带来更多的灵活性,不再为静态schema的字段扩展问题而困扰。然而我们在实际应用中,应该根据自己的业务需求决定是否真的使用动态列,因为动态列的滥用会大幅度的增加我们的维护成本。

四、References

相关实践学习
云数据库HBase版使用教程
&nbsp; 相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情:&nbsp;https://cn.aliyun.com/product/hbase &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
Java 安全
一文读懂Java泛型中的通配符 ?
之前不太明白泛型中通配符"?"的含义,直到我在网上发现了Jakob Jenkov的一篇文章,觉得很不错,所以翻译过来,大家也可以点击文末左下角的阅读原文看英文版的原文。 下面是我的译文: Java泛型中的通配符机制的目的是:让一个持有特定类型(比如A类型)的集合能够强制转换为持有A的子类或父类型的集合,这篇文章将解释这个是如何做的。
14312 2
|
存储 Java 大数据
Spring Boot 2.x :通过 spring-boot-starter-hbase 集成 HBase
HBase 是在 Hadoop 分布式文件系统(简称:HDFS)之上的分布式面向列的数据库。而且是 2007 最初原型,历史悠久。 那追根究底,Hadoop 是什么?Hadoop是一个分布式环境存储并处理大数据。本文介绍通过 spring-boot-starter-hbase 集成 HBase。
13402 0
|
分布式数据库 Hbase
[Phoenix] 二、数据类型
目前Phoenix支持22种简单数据类型和1个一维Array的复杂类型。
10302 1
|
安全 Java API
Nest.js 实战 (三):使用 Swagger 优雅地生成 API 文档
这篇文章介绍了Swagger,它是一组开源工具,围绕OpenAPI规范帮助设计、构建、记录和使用RESTAPI。文章主要讨论了Swagger的主要工具,包括SwaggerEditor、SwaggerUI、SwaggerCodegen等。然后介绍了如何在Nest框架中集成Swagger,展示了安装依赖、定义DTO和控制器等步骤,以及如何使用Swagger装饰器。文章最后总结说,集成Swagger文档可以自动生成和维护API文档,规范API标准化和一致性,但会增加开发者工作量,需要保持注释和装饰器的准确性。
310 0
Nest.js 实战 (三):使用 Swagger 优雅地生成 API 文档
|
12月前
|
安全 网络协议 网络安全
Python Socket编程大揭秘:从菜鸟到黑客的进阶之路,你准备好了吗?
【7月更文挑战第27天】Python Socket编程是网络开发的关键技能,它开启从简单数据传输到复杂应用的大门。Socket作为网络通信的基础,通过Python的`socket`模块可轻松实现跨网通信。
98 0
|
关系型数据库 应用服务中间件 数据库
Harbor高可用集群设计及部署(基于离线安装方式二)
基于Harbor离线安装方式的高可用方案设计及部署。
685 0
|
存储 Java 程序员
如何写好技术文档——来自Google十多年的文档经验
如何写好技术文档——来自Google十多年的文档经验
661 2
如何写好技术文档——来自Google十多年的文档经验
|
Java Maven
JavaFx - exe4j 一键打包 Jar 转 Exe(实现在没有安装JDK环境的电脑上运行)
JavaFx - exe4j 一键打包 Jar 转 Exe(实现在没有安装JDK环境的电脑上运行)
942 0
JavaFx - exe4j 一键打包 Jar 转 Exe(实现在没有安装JDK环境的电脑上运行)
|
SQL Java 分布式数据库
阿里云HBase SQL(Phoenix)服务深度解读
阿里云HBase SQL基于Phoenix 5.0版本,为云HBase2.0赋予NewSQL特性,降低kv接口使用复杂性,并提供Schema、Secondary Indexes、View 、Bulk Loading(离线大规模load数据)、Atomic Upsert、Salted Tables、Dynamic Columns、Skip Scan等特性的能力,大大降低了用户的使用门槛。
11287 0
阿里云HBase SQL(Phoenix)服务深度解读
|
分布式计算 Hadoop 分布式数据库
[Phoenix] 十二、数据迁移
数据迁移工具是否丰富,也在一定程度上决定了数据库的流行程度和它的生态圈。了解其相关工具,能让我们的数据迁移工作更加高效。本文主要介绍 Phoenix 的数据导入导出工具,希望给准备在 Phoenix 上做数据迁移的同学一些帮助。
5025 0