分枝-限界法的相关知识

简介: 定义: 分支定界 (branch and bound) 算法是一种在问题的解空间树上搜索问题的解的方法。但与回溯算法不同,分支定界算法采用广度优 先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。

定义:

分支定界 (branch and bound) 算法是一种在问题的解空间树上搜索问题的解的方法。但与回溯算法不同,分支定界算法采用广度优

先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。利用分支定界算法对问

题的解空间树进行搜索,它的搜索策略是:

  1 .产生当前扩展结点的所有孩子结点;

  2 .在产生的孩子结点中,抛弃那些不可能产生可行解(或最优解)的结点;

  3 .将其余的孩子结点加入活结点表;

  4 .从活结点表中选择下一个活结点作为新的扩展结点。

如此循环,直到找到问题的可行解(最优解)或活结点表为空。分支限界法的思想是:首先确定目标值的上下界,边搜索边减掉搜索

树的某些支,提高搜索效率。

  分枝_限界法是在生成当前E-结点的全部子结点后再生成其它活结点的子结点,与此同时用限界函数帮助避免生成不包含答案结点

子树的状态空间(根结点到其它结点的所有路径一起构成了状态空间)的一种检索方法。在这个总的原则下,根据对状态空间树中结点检

索次序的不同又可将分枝_限界设计策略分为几种不同的检索方法:其中,类似于BFS的状态空间检索称为 FIFO检索(First In First

Out),它的活结点表采用队列加以存储;类似于 D-检索的状态空间检索称为 LIFO检索(Last InFistOut),它的活结点表采用堆栈加

以存储。

  分支限界法类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。但在一般情况下,分支限界法与回溯法的求解目标不同。回溯法的求解目标是找出T中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。

  由于求解目标不同,导致分支限界法与回溯法在解空间树T上的搜索方式也不相同。回溯法以深度优先的方式搜索解空间树T,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树T。分支限界法的搜索策略是:在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展对点。为了有效地选择下一扩展结点,以加速搜索的进程,在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间树上有最优解的分支推进,以便尽快地找出一个最优解。

  分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。问题的解空间树是表示问题解空间的一棵有序树,常见的有子集树和排列树。在搜索问题的解空间树时,分支限界法与回溯法对当前扩展结点所使用的扩展方式不同。在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,那些导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被子加入活结点表中。此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所求的解或活结点表为空时为止.

 

 

相关文章
|
DataWorks 数据可视化 前端开发
《阿里云飞天大数据平台 DataWorks 前端技术解密:工作流调度可视化》(脱敏版本)
## ![image.png](https://intranetproxy.alipay.com/skylark/lark/0/2021/png/13481/1614773723538-e8d99a86-b04d-47bb-86ad-90cdb07ac657.png#height=220&id=QQWI7&margin=%5Bobject%20Object%5D&name=image.png&or
1036 0
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
还在想开题报告?SurveyGO卷姬:清华开源学术论文AI写作神器,一键生成文献综述
SurveyGO是清华与面壁智能联合开源的AI论文写作工具,采用LLMxMapReduce-V2技术实现文献智能聚合,能根据用户输入主题快速生成结构严谨、引用可靠的学术综述。
853 1
还在想开题报告?SurveyGO卷姬:清华开源学术论文AI写作神器,一键生成文献综述
|
2月前
|
数据采集 编解码 监控
Go语言实战案例:使用channel实现生产者消费者模型
本文是「Go语言100个实战案例 · 网络与并发篇」第4篇,通过实战案例详解使用 Channel 实现生产者-消费者模型,涵盖并发控制、任务调度及Go语言并发哲学,助你掌握优雅的并发编程技巧。
|
关系型数据库 MySQL 索引
【Database】排错:Mysql5.6报错Specified key was too long; max key length is 767 bytes
在某个实验系统部署的过程中,出现mysql报错,是特定版本的处理错误,在查阅官网文档时得到解决方案
1722 0
【Database】排错:Mysql5.6报错Specified key was too long; max key length is 767 bytes
|
10月前
|
JSON 自然语言处理 Serverless
基于阿里云通义千问开发智能写作助手
现代办公中,撰写邮件、会议记录、报告等任务耗费大量时间。一个智能写作助手能显著提升效率,帮助用户快速生成高质量的文本内容。阿里云通义千问作为阿里巴巴推出的强大大语言模型(LLM),具备出色的自然语言理解与生成能力,非常适合用于开发智能写作工具。本博客将介绍如何基于通义千问构建一个智能写作助手,实现高效的内容生成和编辑功能。
590 2
|
监控 数据挖掘 数据安全/隐私保护
ERP系统中的成本核算与分析
【7月更文挑战第25天】 ERP系统中的成本核算与分析
1056 2
|
小程序 安全 搜索推荐
【微信小程序开发实战项目】——个人中心页面的制作
本文介绍了如何设计和实现一个网上花店的微信小程序,包括个人中心、我的订单和我的地址等功能模块。个人中心让用户能够查看订单历史、管理地址和与客服互动。代码示例展示了`own.wxml`、`own.wxss`和`own.js`文件,用于构建个人中心界面,包括用户信息、订单链接、收藏、地址、客服和版本信息。我的订单部分展示了订单详情,包括商品图片、名称、销量、价格和订单状态,用户可以查看和管理订单。我的地址功能允许用户输入和编辑收货信息,包括联系人、性别、电话、城市和详细地址。每个功能模块都附有相应的WXML和WXSS代码,以及简洁的样式设计。
822 0
【微信小程序开发实战项目】——个人中心页面的制作
|
缓存 JavaScript 前端开发
前端答疑-v-if重新渲染导致的Bug
因为疫情五一假期也不能出去玩,只好在家撸代码。 正好昨天排查了一个问题,今天记录一下。
1064 0
前端答疑-v-if重新渲染导致的Bug
|
人工智能 C#
Jvedio:.NET开源功能强大的本地视频管理神器
Jvedio:.NET开源功能强大的本地视频管理神器
818 0
|
关系型数据库 MySQL Java
实时计算 Flink版产品使用问题之如何提高Flink从MySQL读取数据的速度并减少延迟
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。