RabbitMQ原理

简介: vhosts(broker) connection 与 channel(连接与信道) exchange 与  routingkey(交换机与路由键) queue(队列) Binding(绑定) client(Producer&Consumer)   AMQP(高级消息队列协议 Advanced Message Queue Protocol) Rabbitmq系统最核心的组件是Exchange和Queue,下图是系统简单的示意图。
  • vhosts(broker)
  • connection 与 channel(连接与信道)
  • exchange 与  routingkey(交换机与路由键)
  • queue(队列)
  • Binding(绑定)
  • client(Producer&Consumer)

 

AMQP(高级消息队列协议 Advanced Message Queue Protocol)

Rabbitmq系统最核心的组件是Exchange和Queue,下图是系统简单的示意图。Exchange和Queue是在rabbitmq server(又叫做broker)端,producer和consumer在应用端。

 

 

使用思路

边的Client向右边的Client发送消息,流程:

1,  获取Conection

2,  获取Channel

3,  定义ExchangeQueue

4,  使用一个RoutingKeyQueue Binding到一个Exchange

5,  通过指定一个Exchange和一个RoutingKey来将消息发送到对应的Queue上,

6,  接收方在接收时也是获取connection,接着获取channel,然后指定一个Queue直接到它关心的Queue上取消息,它对ExchangeRoutingKey及如何binding都不关心,到对应的Queue上去取消息就OK

一个Client发送消息,哪些Client可以收到消息,其核心就在于ExchangeRoutingKeyQueue的关系上。

 

Exchange

RoutingKey

Queue

1

E1

R1

Q1

2

 

R2

Q2

3

E2

R3

Q1

4

 

R4

Q2

5

E1

R5

Q1

6

E2

R6

Q1

 

RoutingKey就像是个中间表,将两个表的数据进行多对多关联,只不过对于相同的ExchangeQueue,可以使用不同的RoutingKey重复关联多次。

由结果可以看出,由Exchange,Queue,RoutingKey三个才能决定一个从Exchange到Queue的唯一的线路。

 

通信过程

假设P1和C1注册了相同的Broker,Exchange和Queue。P1发送的消息最终会被C1消费。基本的通信流程大概如下所示:

  1. P1生产消息,发送给服务器端的Exchange
  2. Exchange收到消息,根据ROUTINKEY,将消息转发给匹配的Queue1
  3. Queue1收到消息,将消息发送给订阅者C1
  4. C1收到消息,发送ACK给队列确认收到消息
  5. Queue1收到ACK,删除队列中缓存的此条消息

Consumer收到消息时需要显式的向rabbit broker发送basic.ack消息或者consumer订阅消息时设置auto_ack参数为true。在通信过程中,队列对ACK的处理有以下几种情况:

  1. 如果consumer接收了消息,发送ack,rabbitmq会删除队列中这个消息,发送另一条消息给consumer。
  2. 如果cosumer接受了消息, 但在发送ack之前断开连接,rabbitmq会认为这条消息没有被deliver,在consumer在次连接的时候,这条消息会被redeliver。
  3. 如果consumer接受了消息,但是程序中有bug,忘记了ack,rabbitmq不会重复发送消息。
  4. rabbitmq2.0.0和之后的版本支持consumer reject某条(类)消息,可以通过设置requeue参数中的reject为true达到目地,那么rabbitmq将会把消息发送给下一个注册的consumer。

 

vhosts(broker)

一个RabbitMQ的实体上可以有多个vhosts,用户与权限设置就是依附于vhosts。

在rabbitmq server上可以创建多个虚拟的message broker,又叫做virtual hosts (vhosts)。每一个vhost本质上是一个mini-rabbitmq server,分别管理各自的exchange,和bindings。vhost相当于物理的server,可以为不同app提供边界隔离,使得应用安全的运行在不同的vhost实例上,相互之间不会干扰。producer和consumer连接rabbit server需要指定一个vhost。

 

connection 与 channel(连接与信道)

connection是指物理的连接,一个client与一个server之间有一个连接;一个连接上可以建立多个channel,可以理解为逻辑上的连接。一般应用的情况下,有一个channel就够用了,不需要创建更多的channel。

 

exchange 与  routingkey(交换机与路由键)

Exchange类似于数据通信网络中的交换机,提供消息路由策略。rabbitmq中,producer不是通过信道直接将消息发送给queue,而是先发送给Exchange。一个Exchange可以和多个Queue进行绑定,producer在传递消息的时候,会传递一个ROUTING_KEY,Exchange会根据这个ROUTING_KEY按照特定的路由算法,将消息路由给指定的queue。和Queue一样,Exchange也可设置为持久化,临时或者自动删除。

Exchange有4种类型:direct(默认),fanout, topic, 和headers,不同类型的Exchange转发消息的策略有所区别:

  1. Direct 直接交换器,工作方式类似于单播,Exchange会将消息发送完全匹配ROUTING_KEY的Queue

  2. fanout 广播是式交换器,不管消息的ROUTING_KEY设置为什么,Exchange都会将消息转发给所有绑定的Queue。

  3. topic 主题交换器,工作方式类似于组播,Exchange会将消息转发和ROUTING_KEY匹配模式相同的所有队列,比如,ROUTING_KEY为user.stock的Message会转发给绑定匹配模式为 * .stock,user.stock, * . * 和#.user.stock.#的队列。( * 表是匹配一个任意词组,#表示匹配0个或多个词组)

  4. headers 消息体的header匹配(ignore)

 

queue(队列)

消息队列,提供了FIFO的处理机制,具有缓存消息的能力。rabbitmq中,队列消息可以设置为持久化,临时或者自动删除。

  1. 设置为持久化的队列,queue中的消息会在server本地硬盘存储一份,防止系统crash,数据丢失
  2. 设置为临时队列,queue中的数据在系统重启之后就会丢失
  3. 设置为自动删除的队列,当不存在用户连接到server,队列中的数据会被自动删除

Binding(绑定)

所谓绑定就是将一个特定的Exchange和一个特定的 Queue 绑定起来。Exchange和Queue的绑定可以是多对多的关系。

 

client(Producer&Consumer)

producer指的是消息生产者,consumer消息的消费者。

 

相关实践学习
快速体验阿里云云消息队列RocketMQ版
本实验将带您快速体验使用云消息队列RocketMQ版Serverless系列实例进行获取接入点、创建Topic、创建订阅组、收发消息、查看消息轨迹和仪表盘。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
目录
相关文章
|
5月前
|
消息中间件 存储 缓存
RocketMQ原理—4.消息读写的性能优化
本文详细解析了RocketMQ消息队列的核心原理与性能优化机制,涵盖Producer消息分发、Broker高并发写入、Consumer拉取消息流程等内容。重点探讨了基于队列的消息分发、Hash有序分发、CommitLog内存写入优化、ConsumeQueue物理存储设计等关键技术点。同时分析了数据丢失场景及解决方案,如同步刷盘与JVM OffHeap缓存分离策略,并总结了写入与读取流程的性能优化方法,为理解和优化分布式消息系统提供了全面指导。
RocketMQ原理—4.消息读写的性能优化
|
5月前
|
消息中间件 存储 设计模式
RocketMQ原理—5.高可用+高并发+高性能架构
本文主要从高可用架构、高并发架构、高性能架构三个方面来介绍RocketMQ的原理。
1108 21
RocketMQ原理—5.高可用+高并发+高性能架构
|
5月前
|
存储 消息中间件 缓存
RocketMQ原理—3.源码设计简单分析下
本文介绍了Producer作为生产者是如何创建出来的、启动时是如何准备好相关资源的、如何从拉取Topic元数据的、如何选择MessageQueue的、与Broker是如何进行网络通信的,Broker收到一条消息后是如何存储的、如何实时更新索引文件的、如何实现同步刷盘以及异步刷盘的、如何清理存储较久的磁盘数据的,Consumer作为消费者是如何创建和启动的、消费者组的多个Consumer会如何分配消息、Consumer会如何从Broker拉取一批消息。
188 11
RocketMQ原理—3.源码设计简单分析下
|
5月前
|
存储 消息中间件 网络协议
RocketMQ原理—1.RocketMQ整体运行原理
本文详细解析了RocketMQ的整体运行原理,涵盖从生产者到消费者的全流程。首先介绍生产者发送消息的机制,包括Topic与MessageQueue的关系及写入策略;接着分析Broker如何通过CommitLog和ConsumeQueue实现消息持久化,并探讨同步与异步刷盘的优缺点。同时,讲解基于DLedger技术的主从同步原理,确保高可用性。消费者部分则重点讨论消费模式(集群 vs 广播)、拉取消息策略及负载均衡机制。网络通信层面,基于Netty的高性能架构通过多线程池分工协作提升并发能力。最后,揭示mmap与PageCache技术优化文件读写的细节,总结了RocketMQ的核心运行机制。
RocketMQ原理—1.RocketMQ整体运行原理
|
5月前
|
消息中间件 Java 数据管理
RocketMQ原理—2.源码设计简单分析上
本文介绍了NameServer的启动脚本、启动时会解析哪些配置、如何初始化Netty网络服务器、如何启动Netty网络服务器,介绍了Broker启动时是如何初始化配置的、BrokerController的创建以及包含的组件、BrokerController的初始化、启动、Broker如何把自己注册到NameServer上、BrokerOuterAPI是如何发送注册请求的,介绍了NameServer如何处理Broker的注册请求、Broker如何发送定时心跳
|
消息中间件 存储 数据库
深入学习RocketMQ的底层存储设计原理
文章深入探讨了RocketMQ的底层存储设计原理,分析了其如何通过将数据和索引映射到内存、异步刷新磁盘以及消息内容的混合存储来实现高性能的读写操作,从而保证了RocketMQ作为一款低延迟消息队列的读写性能。
|
10月前
|
消息中间件 存储 Kafka
RocketMQ 工作原理图解,看这篇就够了!
本文详细解析了 RocketMQ 的核心架构、消息领域模型、关键特性和应用场景,帮助深入理解消息中间件的工作原理。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
RocketMQ 工作原理图解,看这篇就够了!
|
10月前
|
消息中间件 存储 Kafka
MQ 消息队列核心原理,12 条最全面总结!
本文总结了消息队列的12个核心原理,涵盖消息顺序性、ACK机制、持久化及高可用性等内容。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
|
消息中间件 负载均衡 API
RocketMQ生产者负载均衡(轮询机制)核心原理
文章深入分析了RocketMQ生产者的负载均衡机制,特别是轮询机制的实现原理,揭示了如何通过`ThreadLocal`技术和消息队列的选播策略来确保消息在多个队列之间均衡发送,以及如何通过灵活的API支持自定义负载均衡策略。
|
消息中间件 存储 负载均衡
RocketMQ消费者消费消息核心原理(含长轮询机制)
这篇文章深入探讨了Apache RocketMQ消息队列中消费者消费消息的核心原理,特别是长轮询机制。文章从消费者和Broker的交互流程出发,详细分析了Push和Pull两种消费模式的内部实现,以及它们是如何通过长轮询机制来优化消息消费的效率。文章还对RocketMQ的消费者启动流程、消息拉取请求的发起、Broker端处理消息拉取请求的流程进行了深入的源码分析,并总结了RocketMQ在设计上的优点,如单一职责化和线程池的使用等。
RocketMQ消费者消费消息核心原理(含长轮询机制)

热门文章

最新文章