JDK AIO编程

简介: NIO2.0引入了新的异步通道的概念,并提供了异步文件通道和异步套接字通道的实现。异步通道提供两种方式获取获取操作结果。 通过java.util.concurrent.Future类来表示异步操作的结果; 在执行异步操作的时候传入一个java.nio.channels。

NIO2.0引入了新的异步通道的概念,并提供了异步文件通道和异步套接字通道的实现。异步通道提供两种方式获取获取操作结果。

  1. 通过java.util.concurrent.Future类来表示异步操作的结果;
  2. 在执行异步操作的时候传入一个java.nio.channels。

CompletionHandler接口的实现类作为操作完成的回调。

NIO2.0的异步套接字通道是真正的异步非阻塞I/O,它对应UNIX网络编程中的事件驱动I/O(AIO),它不需要通过多路复用器(Selector)对注册的通道进行轮询操作即可实现异步读写,从而简化了NIO的编程模型。

服务端代码示例:

import java.io.IOException;

public class TimeServer {

    public static void main(String[] args) throws IOException {
        int port = 8080;
        if (args != null && args.length > 0) {
            try {
                port = Integer.valueOf(args[0]);
            } catch (NumberFormatException e) {
                // 采用默认值
            }
        }
        //首先创建异步的时间服务器处理类,然后启动线程将AsyncTimeServerHandler启动
        AsyncTimeServerHandler timeServer = new AsyncTimeServerHandler(port);
        new Thread(timeServer, "AIO-AsyncTimeServerHandler-001").start();
    }
}


import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousServerSocketChannel;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.CompletionHandler;
import java.util.concurrent.CountDownLatch;


public class AsyncTimeServerHandler implements Runnable {


    CountDownLatch latch;
    AsynchronousServerSocketChannel asynchronousServerSocketChannel;

    public AsyncTimeServerHandler(int port) {
        //在构造方法中,我们首先创建一个异步的服务端通道AsynchronousServerSocketChannel,
        //然后调用它的bind方法绑定监听端口,如果端口合法且没被占用,绑定成功,打印启动成功提示到控制台。
        try {
            asynchronousServerSocketChannel = AsynchronousServerSocketChannel.open();
            asynchronousServerSocketChannel.bind(new InetSocketAddress(port));
            System.out.println("The time server is start in port : " + port);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    @Override
    public void run() {
        //在线程的run方法中,初始化CountDownLatch对象,
        //它的作用是在完成一组正在执行的操作之前,允许当前的线程一直阻塞。
        //在本例程中,我们让线程在此阻塞,防止服务端执行完成退出。
        //在实际项目应用中,不需要启动独立的线程来处理AsynchronousServerSocketChannel,这里仅仅是个demo演示。
        latch = new CountDownLatch(1);
        doAccept();
        try {
            latch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    //用于接收客户端的连接,由于是异步操作,
    //我们可以传递一个CompletionHandler<AsynchronousSocketChannel,? super A>类型的handler实例接收accept操作成功的通知消息,
    //在本例程中我们通过AcceptCompletionHandler实例作为handler来接收通知消息,
    public void doAccept() {
        asynchronousServerSocketChannel.accept(this, new CompletionHandler<AsynchronousSocketChannel, AsyncTimeServerHandler>() {
            @Override
            public void completed(AsynchronousSocketChannel result,
                                  AsyncTimeServerHandler attachment) {
                //我们从attachment获取成员变量AsynchronousServerSocketChannel,然后继续调用它的accept方法。
                //在此可能会心存疑惑:既然已经接收客户端成功了,为什么还要再次调用accept方法呢?
                //原因是这样的:当我们调用AsynchronousServerSocketChannel的accept方法后,
                //如果有新的客户端连接接入,系统将回调我们传入的CompletionHandler实例的completed方法,
                //表示新的客户端已经接入成功,因为一个AsynchronousServerSocket Channel可以接收成千上万个客户端,
                //所以我们需要继续调用它的accept方法,接收其他的客户端连接,最终形成一个循环。
                //每当接收一个客户读连接成功之后,再异步接收新的客户端连接。
                attachment.asynchronousServerSocketChannel.accept(attachment, this);
                //链路建立成功之后,服务端需要接收客户端的请求消息,
                //创建新的ByteBuffer,预分配1M的缓冲区。
                ByteBuffer buffer = ByteBuffer.allocate(1024);
                //通过调用AsynchronousSocketChannel的read方法进行异步读操作。
                //下面我们看看异步read方法的参数。
                //ByteBuffer dst:接收缓冲区,用于从异步Channel中读取数据包;
                //A attachment:异步Channel携带的附件,通知回调的时候作为入参使用;
                //CompletionHandler<Integer,? super A>:接收通知回调的业务handler,本例程中为ReadCompletionHandler。
                result.read(buffer, buffer, new ReadCompletionHandler(result));
            }

            @Override
            public void failed(Throwable exc, AsyncTimeServerHandler attachment) {
                exc.printStackTrace();
                attachment.latch.countDown();
            }
        });
    }

}

import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.CompletionHandler;

public class ReadCompletionHandler implements CompletionHandler<Integer, ByteBuffer> {

    private AsynchronousSocketChannel channel;

    public ReadCompletionHandler(AsynchronousSocketChannel channel) {
        //将AsynchronousSocketChannel通过参数传递到ReadCompletion Handler中当作成员变量来使用
        //主要用于读取半包消息和发送应答。本例程不对半包读写进行具体说明
        if (this.channel == null)
            this.channel = channel;
    }

    @Override
    public void completed(Integer result, ByteBuffer attachment) {
        //读取到消息后的处理,首先对attachment进行flip操作,为后续从缓冲区读取数据做准备。
        attachment.flip();
        //根据缓冲区的可读字节数创建byte数组
        byte[] body = new byte[attachment.remaining()];
        attachment.get(body);
        try {
            //通过new String方法创建请求消息,对请求消息进行判断,
            //如果是"QUERY TIME ORDER"则获取当前系统服务器的时间,
            String req = new String(body, "UTF-8");
            System.out.println("The time server receive order : " + req);
            String currentTime = "QUERY TIME ORDER".equalsIgnoreCase(req) ? new java.util.Date(
                    System.currentTimeMillis()).toString() : "BAD ORDER";
            //调用doWrite方法发送给客户端。
            doWrite(currentTime);
        } catch (UnsupportedEncodingException e) {
            e.printStackTrace();
        }
    }

    private void doWrite(String currentTime) {
        if (currentTime != null && currentTime.trim().length() > 0) {
            //首先对当前时间进行合法性校验,如果合法,调用字符串的解码方法将应答消息编码成字节数组,
            //然后将它复制到发送缓冲区writeBuffer中,
            byte[] bytes = (currentTime).getBytes();
            ByteBuffer writeBuffer = ByteBuffer.allocate(bytes.length);
            writeBuffer.put(bytes);
            writeBuffer.flip();
            //最后调用AsynchronousSocketChannel的异步write方法。
            //正如前面介绍的异步read方法一样,它也有三个与read方法相同的参数,
            //在本例程中我们直接实现write方法的异步回调接口CompletionHandler。
            channel.write(writeBuffer, writeBuffer,
                    new CompletionHandler<Integer, ByteBuffer>() {
                        @Override
                        public void completed(Integer result, ByteBuffer buffer) {
                            //对发送的writeBuffer进行判断,如果还有剩余的字节可写,说明没有发送完成,需要继续发送,直到发送成功。
                            if (buffer.hasRemaining())
                                channel.write(buffer, buffer, this);
                        }

                        @Override
                        public void failed(Throwable exc, ByteBuffer attachment) {
                            //关注下failed方法,它的实现很简单,就是当发生异常的时候,对异常Throwable进行判断,
                            //如果是I/O异常,就关闭链路,释放资源,
                            //如果是其他异常,按照业务自己的逻辑进行处理,如果没有发送完成,继续发送.
                            //本例程作为简单demo,没有对异常进行分类判断,只要发生了读写异常,就关闭链路,释放资源。
                            try {
                                channel.close();
                            } catch (IOException e) {
                                // ingnore on close
                            }
                        }
                    });
        }
    }

    @Override
    public void failed(Throwable exc, ByteBuffer attachment) {
        try {
            this.channel.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

客户端代码示例:

public class TimeClient {

    public static void main(String[] args) {
        int port = 8080;
        //通过一个独立的I/O线程创建异步时间服务器客户端handler,
        //在实际项目中,我们不需要独立的线程创建异步连接对象,因为底层都是通过JDK的系统回调实现的.
        new Thread(new AsyncTimeClientHandler("127.0.0.1", port), "AIO-AsyncTimeClientHandler-001").start();
    }
}

import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.AsynchronousSocketChannel;
import java.nio.channels.CompletionHandler;
import java.util.concurrent.CountDownLatch;

public class AsyncTimeClientHandler implements CompletionHandler<Void, AsyncTimeClientHandler>, Runnable {

    private AsynchronousSocketChannel client;
    private String host;
    private int port;
    private CountDownLatch latch;

    //首先通过AsynchronousSocketChannel的open方法创建一个新的AsynchronousSocketChannel对象。
    public AsyncTimeClientHandler(String host, int port) {
        this.host = host;
        this.port = port;
        try {
            client = AsynchronousSocketChannel.open();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    @Override
    public void run() {
        //创建CountDownLatch进行等待,防止异步操作没有执行完成线程就退出。
        latch = new CountDownLatch(1);
        //通过connect方法发起异步操作,它有两个参数,
        //A attachment:AsynchronousSocketChannel的附件,用于回调通知时作为入参被传递,调用者可以自定义;
        //CompletionHandler<Void,? super A> handler:异步操作回调通知接口,由调用者实现。
        client.connect(new InetSocketAddress(host, port), this, this);
        try {
            latch.await();
        } catch (InterruptedException e1) {
            e1.printStackTrace();
        }
        try {
            client.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    //异步连接成功之后的方法回调——completed方法
    @Override
    public void completed(Void result, AsyncTimeClientHandler attachment) {
        //创建请求消息体,对其进行编码,然后复制到发送缓冲区writeBuffer中,
        //调用Asynchronous SocketChannel的write方法进行异步写。
        //与服务端类似,我们可以实现CompletionHandler <Integer, ByteBuffer>接口用于写操作完成后的回调。
        byte[] req = "QUERY TIME ORDER".getBytes();
        ByteBuffer writeBuffer = ByteBuffer.allocate(req.length);
        writeBuffer.put(req);
        writeBuffer.flip();
        client.write(writeBuffer, writeBuffer,
                new CompletionHandler<Integer, ByteBuffer>() {
                    @Override
                    public void completed(Integer result, ByteBuffer buffer) {
                        //如果发送缓冲区中仍有尚未发送的字节,将继续异步发送,如果已经发送完成,则执行异步读取操作。
                        if (buffer.hasRemaining()) {
                            client.write(buffer, buffer, this);
                        } else {
                            //客户端异步读取时间服务器服务端应答消息的处理逻辑
                            ByteBuffer readBuffer = ByteBuffer.allocate(1024);
                            //调用AsynchronousSocketChannel的read方法异步读取服务端的响应消息。
                            //由于read操作是异步的,所以我们通过内部匿名类实现CompletionHandler<Integer,ByteBuffer>接口,
                            //当读取完成被JDK回调时,构造应答消息。
                 client.read(readBuffer,readBuffer, new CompletionHandler<Integer, ByteBuffer>() { @Override public void completed(Integer result,ByteBuffer buffer) { //从CompletionHandler的ByteBuffer中读取应答消息,然后打印结果。 buffer.flip(); byte[] bytes = new byte[buffer.remaining()]; buffer.get(bytes); String body; try { body = new String(bytes,"UTF-8"); System.out.println("Now is : " + body); latch.countDown(); } catch (UnsupportedEncodingException e) { e.printStackTrace(); } } @Override public void failed(Throwable exc, ByteBuffer attachment) { //当读取发生异常时,关闭链路, //同时调用CountDownLatch的countDown方法让AsyncTimeClientHandler线程执行完毕,客户端退出执行。 try { client.close(); latch.countDown(); } catch (IOException e) { // ingnore on close } } }); } } @Override public void failed(Throwable exc, ByteBuffer attachment) { try { client.close(); latch.countDown(); } catch (IOException e) { // ingnore on close } } }); } @Override public void failed(Throwable exc, AsyncTimeClientHandler attachment) { exc.printStackTrace(); try { client.close(); latch.countDown(); } catch (IOException e) { e.printStackTrace(); } } }

需要指出的是,正如之前的NIO例程,我们并没有完整的处理网络的半包读写,在对例程进行功能测试的时候没有问题,但是,如果对代码稍加改造,进行压力或者性能测试,就会发现输出结果存在问题。

通过打印线程堆栈的方式看下JDK回调异步Channel CompletionHandler的调用情况:

从“Thread-2”线程堆栈中可以发现,JDK底层通过线程池ThreadPoolExecutor来执行回调通知,异步回调通知类由sun.nio.ch.AsynchronousChannelGroupImpl实现,它经过层层调用,最终回调com.phei.netty.aio.AsyncTimeClientHandler$1.completed方法,完成回调通知。

由此我们也可以得出结论:异步SocketChannel是被动执行对象,我们不需要像NIO编程那样创建一个独立的I/O线程来处理读写操作。对于AsynchronousServerSocketChannel和AsynchronousSocketChannel,它们都由JDK底层的线程池负责回调并驱动读写操作

正因为如此,基于NIO2.0新的异步非阻塞Channel进行编程比NIO编程更为简单。

 

 

目录
相关文章
|
Java
JDK BIO编程
网络编程的基本模型是Client/Server模型,也就是两个进程之间进行相互通信,其中服务端提供位置信息(绑定的IP地址和监听端口),客户端通过连接操作向服务端监听的地址发起连接请求,通过三次握手建立连接,如果连接建立成功,双方就可以通过网络套接字(Socket)进行通信。
938 0
|
编解码 网络协议 Java
JDK NIO编程
我们首先需要澄清一个概念:NIO到底是什么的简称?有人称之为New I/O,因为它相对于之前的I/O类库是新增的,所以被称为New I/O,这是它的官方叫法。但是,由于之前老的I/O类库是阻塞I/O,New I/O类库的目标就是要让Java支持非阻塞I/O,所以,更多的人喜欢称之为非阻塞I/O(Non-block I/O),由于非阻塞I/O更能够体现NIO的特点。
1064 0
|
Java 应用服务中间件 Maven
2、MyEclipse和Eclipse调优,MyEclipse配置(tomcat和jdk的内存设置),jar引入相关知识点,将Java项目编程web项目的办法
1.WindowàPreferenceàGeneralàWorkspaceàText file encoding都改成UTF-8 2、WindowàPreferenceàGeneralàEditorsàFile Associationsà修改html和htm的默认Associateeditors为以下的: 修改jsp的打开方式: 修改xml的打开方式: 3、修改MyEclipse
1364 0
|
19天前
|
IDE Oracle Java
day4:JDK、IntelliJ IDEA的安装和环境变量配置
【7月更文挑战第4天】🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!
48 0
|
15天前
|
存储 Ubuntu Java
【Linux】已解决:Ubuntu虚拟机安装Java/JDK
【Linux】已解决:Ubuntu虚拟机安装Java/JDK
22 1
|
28天前
|
Linux 测试技术 开发工具
CentOS Linux 8使用阿里源(安装jdk11、git测试)
CentOS Linux 8使用阿里源(安装jdk11、git测试)
147 1
|
1月前
|
Java 关系型数据库 MySQL
杨校老师课堂之Java项目部署到云端服务器之安装MySQL、Jdk、Tomcat
杨校老师课堂之Java项目部署到云端服务器之安装MySQL、Jdk、Tomcat
33 0
杨校老师课堂之Java项目部署到云端服务器之安装MySQL、Jdk、Tomcat
|
1月前
|
Oracle Java 关系型数据库
玩客云安装Armbian和部署jdk环境
该文介绍了在玩客云设备上安装Armbian系统和Java SDK的步骤。首先,需要准备玩客云设备、Armbian镜像文件和USB工具。然后,通过短接点刷入Armbian系统,并通过SSH访问。接着,从可信源下载Java SDK,将其解压并移动到合适目录,编辑环境变量使其生效。最后验证Java安装成功。注意选择兼容版本并备份数据。内容涵盖了ROM开发相关技术。
|
1月前
|
Oracle Java 关系型数据库
Java入门——开发环境、入门程序(搭建Java开发环境、安装JDK 验证、JDK、编写代码、编译代码、运行代码)
Java入门——开发环境、入门程序(搭建Java开发环境、安装JDK 验证、JDK、编写代码、编译代码、运行代码)
36 3
|
1月前
|
Java
树莓派安装java jdk8
树莓派安装java jdk8
62 5