生成对抗网络(GAN)

简介: 基本思想 GAN全称生成对抗网络,是生成模型的一种,而他的训练则是处于一种对抗博弈状态中的。 譬如:我要升职加薪,你领导力还不行,我现在领导力有了要升职加薪,你执行力还不行,我现在执行力有了要升职加薪,通过这样不断的努力和被拒绝,最后的最后你要不离职了要不升职加薪了。

基本思想

GAN全称生成对抗网络,是生成模型的一种,而他的训练则是处于一种对抗博弈状态中的。

譬如:我要升职加薪,你领导力还不行,我现在领导力有了要升职加薪,你执行力还不行,我现在执行力有了要升职加薪,通过这样不断的努力和被拒绝,最后的最后你要不离职了要不升职加薪了。

这个例子中,个人的能力在不断的变化,领导的定义也在不断变化,选领导要通过不断的对比观察,你要通过不断的训练和实践,处于一种对抗博弈中。

基本结构

GAN的主要结构包括一个生成器G(Generator)和一个判别器D(Discriminator)。

上面的领导是判别器,你是生成器。领导需要告诉你如何才能成为领导,你需要学习训练成为领导。 

定义一个模型来作为生成器,输入需要一个n维度向量(能骗过判别器,譬如执行力,领导力,创新力),能够输出一个向量,譬如输出一个领导。

定义一个分类器来作为判别器用来判别此人是否是领导,输入为此人,输出为判别是或否。

目录
相关文章
|
4月前
|
机器学习/深度学习 API 算法框架/工具
【Tensorflow+keras】Keras API两种训练GAN网络的方式
使用Keras API以两种不同方式训练条件生成对抗网络(CGAN)的示例代码:一种是使用train_on_batch方法,另一种是使用tf.GradientTape进行自定义训练循环。
49 5
|
4月前
|
机器学习/深度学习 数据可视化 算法框架/工具
【深度学习】Generative Adversarial Networks ,GAN生成对抗网络分类
文章概述了生成对抗网络(GANs)的不同变体,并对几种经典GAN模型进行了简介,包括它们的结构特点和应用场景。此外,文章还提供了一个GitHub项目链接,该项目汇总了使用Keras实现的各种GAN模型的代码。
77 0
|
6月前
|
机器学习/深度学习 自然语言处理 算法
生成对抗网络(GAN):创造与竞争的艺术
【6月更文挑战第14天】**生成对抗网络(GANs)**是深度学习中的亮点,由生成器和判别器两部分构成,通过博弈式训练实现数据生成。GAN已应用于图像生成、修复、自然语言处理和音频生成等领域,但还面临训练不稳定性、可解释性差和计算资源需求高等挑战。未来,随着技术发展,GAN有望克服这些问题并在更多领域发挥潜力。
|
5月前
|
机器学习/深度学习 PyTorch API
生成对抗网络(GAN)由两部分组成:生成器(Generator)和判别器(Discriminator)。
生成对抗网络(GAN)由两部分组成:生成器(Generator)和判别器(Discriminator)。
|
7月前
|
机器学习/深度学习 数据可视化 PyTorch
使用Python实现深度学习模型:生成对抗网络(GAN)
使用Python实现深度学习模型:生成对抗网络(GAN)
170 3
|
7月前
|
机器学习/深度学习 JavaScript 算法
深度学习500问——Chapter07:生成对抗网络(GAN)(1)
深度学习500问——Chapter07:生成对抗网络(GAN)(1)
141 3
|
7月前
|
机器学习/深度学习 人工智能 编解码
【AI 生成式】生成对抗网络 (GAN) 的概念
【5月更文挑战第4天】【AI 生成式】生成对抗网络 (GAN) 的概念
【AI 生成式】生成对抗网络 (GAN) 的概念
|
7月前
|
机器学习/深度学习
GAN网络的代码实现(学习ing)
GAN网络的代码实现(学习ing)
|
7月前
|
机器学习/深度学习 编解码 自然语言处理
深度学习500问——Chapter07:生成对抗网络(GAN)(3)
深度学习500问——Chapter07:生成对抗网络(GAN)(3)
105 0
|
7月前
|
机器学习/深度学习 JavaScript Linux
深度学习500问——Chapter07:生成对抗网络(GAN)(2)
深度学习500问——Chapter07:生成对抗网络(GAN)(2)
120 0