Investigating perfomance bottlenecks in SQL Server 2008 by looking at wait events using the XE trace system

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
简介:

Introduction.

In my previous articles  SQL Server Wait Events: Taking the Guesswork out of Performance Profiling,  and Taking the Guesswork out of SQL Server Performance Profiling Part 2, I introduced the concepts of performance analysis based on wait events.

In short, the idea behind this concept is to take the response time of a SQL statement (or a batch or a user session) and split it up into CPU time and Wait time..

Earlier versions of SQL Server only maintain wait time (aggregated) on the server level, or you can see the wait times and the wait reasons, and when they actually occur in views like sysprocesses orsys.dm_os_waiting_tasks. Starting with SQL Server 2005, the wait events are finally documented in the SQL Server BOL, and more and more background is provided in blogs, KB Articles, forums etc.

A wait event ‘happens’ when the SQL Server scheduler (implemented in the SQLOS) decides to suspend a running task.

This can be because a ‘long’ operation starts, such as disk,  network I/O, or  lock. It can also happen when the allotted time quantum that a task can be active on the CPU ends. At this moment this seems to be a hard-coded 4 ms. This is the means by which that the SQL Server scheduler makes sure that every task in SQL Server gets its turn running on the CPU. By carefully looking at the way the response time is build up, one can make intelligent decisions on where to look for possible optimizations, or capacity planning: For instance, if on your SQL Server box 90% of the total used (response) time consists of I/O waits and only 10% of the time is spend on the CPU, then adding CPU capacity or upgrading to faster CPUs is unlikely to have a very large impact on response times. The same is true for individual queries. If one query spends 90% of its time waiting for I/O, then speeding up the CPU will only impact the other 10% of the response time picture.

SQL Server 2008 introduces Extended Events (XE) a new event handling system. XE is a flexible and lightweight event trace system.

The SQL Server engine is instrumented with tracing code in many locations. It is possible to trace ‘traditional’ events as existed in older SQL Trace versions, events like ‘RPC:Completed’. ‘sp_completed’, ‘lock timeout’ etc.

An exciting new tracing feature, is the means by which one can trace information about SQL Server OS (SQLOS) wait events

Each event contains a set of interesting columns that will be logged to a ‘target’. In this example, we have chosen a file. Next to the ‘default’ set of columns for an event, extra information can be logged as well. This is done by defining ‘actions’ on a traced event. Below is an example of standard columns that are logged for the event‘wait_info’ in the package ‘sqlos’, and for the event, ‘sql_statement_completed’ in the sqlserver package, which will also be used in the example:

name                         column_id       object_name           

--------------------         -----------     -----------------------             

wait_type                    0                wait_info        

opcode                       1                wait_info 

duration                     2                wait_info 

max_duration                 3                wait_info 

total_duration               4                wait_info 

signal_duration              5                wait_info 

completed_count              6                wait_info

source_database_id           0                sql_statement_completed

object_id                    1                sql_statement_completed

object_type                  2                sql_statement_completed

cpu                          3                sql_statement_completed

duration                     4                sql_statement_completed

reads                        5                sql_statement_completed

writes                       6                sql_statement_completed

Next is an example on how to setup wait event tracing and collecting information from an ‘asynchronous file target’.  Only specific events are collected for session_id=53.

First we create the ‘event session’, and start it.

After this, we can run an example query from a session with session_id=53, a count(*) query was run on a 1 million row (unindexed) table.

Example 1:

 

create event session test1

on server

add event sqlserver.sql_statement_starting

(action

            (sqlserver.session_id, package0.collect_system_time,

package0.collect_cpu_cycle_time,sqlserver.sql_text,

sqlserver.plan_handle, sqlos.task_address, sqlos.worker_address)

            where sqlserver.session_id = 53),

add event sqlserver.sql_statement_completed

(action

(sqlserver.session_id, package0.collect_system_time,package0.collect_cpu_cycle_time, sqlserver.sql_text,

sqlserver.plan_handle, sqlos.task_address, sqlos.worker_address)

      where sqlserver.session_id = 53),

add event sqlos.wait_info

            (action

(sqlserver.session_id,  package0.collect_system_time,package0.collect_cpu_cycle_time, sqlos.task_address, sqlos.worker_address)

       where sqlserver.session_id = 53)

--

--          async file, read with: sys.fn_xe_file_target_read_file

--

 ADD TARGET package0.asynchronous_file_target

(SET filename = N'C:\temp\wait.etx', metadatafile = N'C:\temp\wait.mta',

                        max_file_size = 50, max_rollover_files = 10)

            WITH (max_dispatch_latency = 2 seconds)

go

alter event session test1 on server state = start

go

Example 2:

The next example shows how to collect the trace information from the trace files for further processing. As you can see from the example, the files is read ‘through’ a virtual function, ‘sys.fn_xe_file_target_read_file‘, and the rows are returned in XML form.

The insert into the xTable counted 4938 rows. For the next summary I only collected the ‘wait_info’ ‘end’ events (1560 rows) and the ‘sql_statement_completed’ event (1 row):

drop table xTable

CREATE TABLE xTable

    (

      xTable_ID INT IDENTITY

                    PRIMARY KEY,

      xCol XML

    ) ;

 

INSERT  INTO xTable ( xCol )

select cast(event_data as xml) waitinfo from sys.fn_xe_file_target_read_file

('c:\temp\wait_*.etx',

'c:\temp\wait_*.mta',

null,null)

Now in order to extract the CPU and Wait information and match it with the total response time, we run the following queries:

SELECT 

-- for some reason wait type name is not logged with synch target. bug?

(select map_value from sys.dm_xe_map_values

    where name = 'wait_types'

        and map_key = xCol.value('(event/data/value)[1]', 'int')

)AS wtype,

     xCol.value('(event/data/value)[3]', 'int')  --wait time

                                    AS tottime,

     xCol.value('(event/data/value)[6]', 'int') --sig wait time

                                    AS sigtime

     into #mywaits   

FROM    xTable

where xCol.value('(/event/@name)[1]', 'varchar(30)') = 'wait_info'     

 and xCol.value('(event/data/value)[2]', 'int') = 1 --opcode end         

 

select  wtype,

        count(*) as wcount,

        sum(tottime) as total_time,

        sum(sigtime) as signal_time

        from #mywaits group by wtype

go

-- stmt completed:

 

SELECT 

                        xCol.value('(event/data/value)[4]', 'int')

                                    AS cputime,

                        xCol.value('(event/data/value)[5]', 'int')

                                    AS duration,

                        xCol.value('(event/action/value)[4]', 'varchar(MAX)')

                                    AS sql_text

into #mysql

FROM    [xTable]

where xCol.value('(/event/@name)[1]', 'varchar(30)') ='sql_statement_completed'    

select  sql_text,

        count(*) as count,

        SUM(cputime) as cputime,

        SUM(duration) as duration from #mysql group by sql_text

go

drop table #mywaits

drop table #mysql

This is the result of the above queries:

   wtype                       wcount         total_time    signal_time   

--------------------------  -----------    -----------   -----------   

PWAIT_SOS_SCHEDULER_YIELD   20             45            0             

PWAIT_SLEEP_TASK            1              10            0             

PWAIT_PAGEIOLATCH_SH        1539           59163         674           

                                                                            

 (1 row(s) affected)                                                           

sql_text                    count      cputime   duration      

-------------------------   --------   --------  -----------   

select COUNT(*) from t1m    1          1892      61560364      

                                                                             

So what we can see here is that the statement response time (duration) was 6156 ms (apparently, the sqlserver.sql_statement_completed.duration is measured in microseconds)

The CPU time used was 1892 ms and the wait time for the three different wait events was 45+10+59163 ms = 59218 ms. Including the measured signal_time (the time between the end of the actual wait and the resumption of work) this nicely adds up to the total duration of the query.

For more information on the specific wait events, search the SQL Server BOL for the sys.dm_os_wait_stats view. All wait events are documented here.

It is also possible to look at each individual wait event. This can be useful to detect skew in wait durations for example. If you detect that certain I/O operations take longer than others, it might be interesting to add other XEvents to trace. Events like ‘file_read_completed’ will show which file was read and which offset within the file. The event ‘physical_page_read’, can tell which page for which file. These events can help detecting if you might be reading from slow disks or doing random I/O while you were expecting to do sequential I/Os.

-- first: sql_statement_starting

SELECT  xTable_ID,

                        xCol.value('(event/action/value)[1]', 'int')

                                    AS session_id,

                        xCol.value('(/event/@timestamp)[1]', 'varchar(24)')

                                    AS EventTime,

                        xCol.value('(/event/@name)[1]', 'varchar(30)')

                                    AS EventType,

                        xCol.value('(event/action/value)[2]', 'varchar(30)')

                                    AS system_time,

                        xCol.value('(event/action/value)[3]', 'varchar(30)')

                                    AS cpu_cycle_time,

                        xCol.value('(event/data/value)[5]', 'varchar(30)')

                                    AS data1,

                        xCol.value('(event/data/value)[6]', 'varchar(30)')

                                    AS data2,

                        xCol.value('(event/action/value)[4]', 'varchar(MAX)')

                                    AS sql_text

FROM    [xTable]

where xCol.value('(/event/@name)[1]', 'varchar(30)') = 'sql_statement_starting'

union    --now collect: statement_completed                    

SELECT  xTable_ID,

                        xCol.value('(event/action/value)[1]', 'int')

                                    AS session_id,

                        xCol.value('(/event/@timestamp)[1]', 'varchar(24)')

                                    AS EventTime,

                        xCol.value('(/event/@name)[1]', 'varchar(30)')

                                    AS EventType,

                        xCol.value('(event/action/value)[2]', 'varchar(30)')

                                    AS system_time,

                        xCol.value('(event/action/value)[3]', 'varchar(30)')

                                    AS cpu_cycle_time,

                        xCol.value('(event/data/value)[4]', 'varchar(30)')

                                    AS data1,

                        xCol.value('(event/data/value)[5]', 'varchar(30)')

                                    AS data2,

                        xCol.value('(event/action/value)[4]', 'varchar(MAX)')

                                    AS sql_text

FROM    [xTable]

where xCol.value('(/event/@name)[1]', 'varchar(30)') = 'sql_statement_completed'

union

SELECT  xTable_ID,

                        xCol.value('(event/action/value)[1]', 'int')

                                    AS session_id,

                        xCol.value('(/event/@timestamp)[1]', 'varchar(24)')

                                    AS EventTime,

-- for some reason wait type name is not logged with synch target. bug?

                         (select map_value from sys.dm_xe_map_values

                            where name = 'wait_types'

                            and map_key =  xCol.value('(event/data/value)[1]','int')

                          ) as Event_name,

                        xCol.value('(event/action/value)[2]', 'varchar(30)')

                                    AS system_time,

                        xCol.value('(event/action/value)[3]', 'varchar(30)')

                                    AS cpu_cycle_time,

xCol.value('(event/data/value)[3]', 'varchar(30)')  --wait time

                                    AS data1,

xCol.value('(event/data/value)[6]', 'varchar(30)') --sig wait time

                                    AS data2,

                        ''

                                    AS sql_text

                       

FROM    [xTable]

where xCol.value('(/event/@name)[1]', 'varchar(30)') = 'wait_info'     

 and xCol.value('(event/data/value)[2]', 'int') = 1 -- opcode end        

 

 

This article, submitted in May, was originally scheduled for publication as part of Simple-Talk's celebration of the launch of SQL Server 2008 next month, but has been brought forward in view of the current interest in the subject



    本文转自 Fanr_Zh 博客园博客,原文链接:http://www.cnblogs.com/Amaranthus/archive/2012/02/14/2350874.html,如需转载请自行联系原作者




相关实践学习
使用SQL语句管理索引
本次实验主要介绍如何在RDS-SQLServer数据库中,使用SQL语句管理索引。
SQL Server on Linux入门教程
SQL Server数据库一直只提供Windows下的版本。2016年微软宣布推出可运行在Linux系统下的SQL Server数据库,该版本目前还是早期预览版本。本课程主要介绍SQLServer On Linux的基本知识。 相关的阿里云产品:云数据库RDS SQL Server版 RDS SQL Server不仅拥有高可用架构和任意时间点的数据恢复功能,强力支撑各种企业应用,同时也包含了微软的License费用,减少额外支出。 了解产品详情: https://www.aliyun.com/product/rds/sqlserver
相关文章
|
7月前
|
SQL 关系型数据库 MySQL
SQL Error (2013): Lost connection to MySQL server at 'waiting for initial communication packet', sys...
SQL Error (2013): Lost connection to MySQL server at 'waiting for initial communication packet', sys...
196 0
|
5月前
|
SQL 安全 网络安全
Hospital Management System v4.0 SQL 注入(CVE-2022-24263)
Hospital Management System v4.0 SQL 注入(CVE-2022-24263)
|
6月前
|
存储 SQL 关系型数据库
【BUG记录】Cause: java.sql.SQLException: Incorrect string value: '\xF0\x9F\x90\xA6' for column 'name' at row 1
在MySQL中遇到`Incorrect string value`错误通常是因为尝试插入的字符串包含不被数据库字符集支持的字符,如表情符号。错误根源是MySQL默认的utf8不支持4字节的UTF-8字符(如Emoji)。
719 1
|
5月前
|
SQL 安全 关系型数据库
Web Based Quiz System v1.0 SQL 注入(CVE-2022-32991)
Web Based Quiz System v1.0 SQL 注入(CVE-2022-32991)
|
SQL 数据库
解决Incorrect string value: ‘\xE5\xBC\xA0\xE4\xB8\x89‘ for column ‘name‘ at row 1 SQL Statement的问题~
解决Incorrect string value: ‘\xE5\xBC\xA0\xE4\xB8\x89‘ for column ‘name‘ at row 1 SQL Statement的问题~
476 0
|
SQL 数据库
RM在Seata AT模式中的sql执行流程
RM在Seata AT模式中的sql执行流程
101 0
|
SQL JSON 关系型数据库
几个必须掌握的SQL优化技巧(四):使用Trace工具分析优化器执行计划
在应用的开发过程中,由于开发初期的数据量一般都比较小,所以开发过程中一般都比较注重功能上的实现,但是当完成了一个应用或者系统之后,随着生产数据量的急剧增长,那么之前的很多sql语句的写法就会显现出一定的性能问题,对生产的影响也会越来越大,这些不恰当的sql语句就会成为整个系统性能的瓶颈,为了追求系统的极致性能,必须要对它们进行优化。
426 0
几个必须掌握的SQL优化技巧(四):使用Trace工具分析优化器执行计划
|
SQL 关系型数据库 分布式数据库
SQL 手册-实用 SQL 语句-TRACE
TRACE 语句用于查看具体 SQL 的执行情况。TRACE [SQL] 和 SHOW TRACE 要结合使用。
244 0
|
SQL Java 关系型数据库