查找链表中倒数第k个结点

简介: 题目:输入一个单向链表,输出该链表中倒数第k个结点。链表的倒数第0个结点为链表的尾指针。链表结点定义如下:   struct ListNode { int m_nKey; ListNode* m_pNext; };     分析:为了得到倒数第k个结点,很自然的想法是先走到链表的尾端,再从尾端回溯k步。

 

题目:输入一个单向链表,输出该链表中倒数第k个结点。链表的倒数第0个结点为链表的尾指针。链表结点定义如下:

 

struct ListNode
{
      int       m_nKey;
      ListNode* m_pNext;
};

 

 

分析:为了得到倒数第k个结点,很自然的想法是先走到链表的尾端,再从尾端回溯k步。可是输入的是单向链表,只有从前往后的指针而没有从后往前的指针。因此我们需要打开我们的思路。

 既然不能从尾结点开始遍历这个链表,我们还是把思路回到头结点上来。假设整个链表有n个结点,那么倒数第k个结点是从头结点开始的第n-k-1个结点(从0开始计数)。如果我们能够得到链表中结点的个数n,那我们只要从头结点开始往后走n-k-1步就可以了。如何得到结点数n?这个不难,只需要从头开始遍历链表,每经过一个结点,计数器加一就行了。

 这种思路的时间复杂度是O(n),但需要遍历链表两次。第一次得到链表中结点个数n,第二次得到从头结点开始的第n­-k-1个结点即倒数第k个结点。

 如果链表的结点数不多,这是一种很好的方法。但如果输入的链表的结点个数很多,有可能不能一次性把整个链表都从硬盘读入物理内存,那么遍历两遍意味着一个结点需要两次从硬盘读入到物理内存。我们知道把数据从硬盘读入到内存是非常耗时间的操作。我们能不能把链表遍历的次数减少到1?如果可以,将能有效地提高代码执行的时间效率。

 如果我们在遍历时维持两个指针,第一个指针从链表的头指针开始遍历,在第k-1步之前,第二个指针保持不动;在第k-1步开始,第二个指针也开始从链表的头指针开始遍历。由于两个指针的距离保持在k-1,当第一个(走在前面的)指针到达链表的尾结点时,第二个指针(走在后面的)指针正好是倒数第k个结点。

 这种思路只需要遍历链表一次。对于很长的链表,只需要把每个结点从硬盘导入到内存一次。因此这一方法的时间效率前面的方法要高。

 思路一的参考代码:

///////////////////////////////////////////////////////////////////////
// Find the kth node from the tail of a list
// Input: pListHead - the head of list
//        k         - the distance to the tail
// Output: the kth node from the tail of a list
///////////////////////////////////////////////////////////////////////
ListNode* FindKthToTail_Solution1(ListNode* pListHead, unsigned int k)
{
      if(pListHead == NULL)
            return NULL;

      // count the nodes number in the list
      ListNode *pCur = pListHead;
      unsigned int nNum = 0;
      while(pCur->m_pNext != NULL)
      {
            pCur = pCur->m_pNext;
            nNum ++;
      }

      // if the number of nodes in the list is less than k
      // do nothing
      if(nNum < k)
            return NULL;

      // the kth node from the tail of a list 
      // is the (n - k)th node from the head
      pCur = pListHead;
      for(unsigned int i = 0; i < nNum - k; ++ i)
            pCur = pCur->m_pNext;

       return pCur;
}

 

思路二的参考代码:

///////////////////////////////////////////////////////////////////////
// Find the kth node from the tail of a list
// Input: pListHead - the head of list
//        k         - the distance to the tail
// Output: the kth node from the tail of a list
///////////////////////////////////////////////////////////////////////
ListNode* FindKthToTail_Solution2(ListNode* pListHead, unsigned int k)
{
      if(pListHead == NULL)
            return NULL;

      ListNode *pAhead = pListHead;
      ListNode *pBehind = NULL;

      for(unsigned int i = 0; i < k; ++ i)
      {
            if(pAhead->m_pNext != NULL)
                  pAhead = pAhead->m_pNext;
            else
            {
                  // if the number of nodes in the list is less than k, 
                  // do nothing
                  return NULL;
            }
      }

      pBehind = pListHead;

      // the distance between pAhead and pBehind is k
      // when pAhead arrives at the tail, p
      // Behind is at the kth node from the tail
      while(pAhead->m_pNext != NULL)
      {
            pAhead = pAhead->m_pNext;
            pBehind = pBehind->m_pNext;
      }

      return pBehind;
}

 

讨论:这道题的代码有大量的指针操作。在软件开发中,错误的指针操作是大部分问题的根源。因此每个公司都希望程序员在操作指针时有良好的习惯,比如使用指针之前判断是不是空指针。这些都是编程的细节,但如果这些细节把握得不好,很有可能就会和心仪的公司失之交臂。

另外,这两种思路对应的代码都含有循环。含有循环的代码经常出的问题是在循环结束条件的判断。是该用小于还是小于等于?是该用k还是该用k-1?由于题目要求的是从0开始计数,而我们的习惯思维是从1开始计数,因此首先要想好这些边界条件再开始编写代码,再者要在编写完代码之后再用边界值、边界值减1、边界值加1都运行一次(在纸上写代码就只能在心里运行了)。

扩展:

1.输入一个单向链表。如果该链表的结点数为奇数,输出中间的结点;如果链表结点数为偶数,输出中间两个结点前面的一个。

为了解决这个问题,我们也可以定义两个指针,同时从链表的头结点出发,一个指针一次走一步,另一个指针一次走两步。当走得快的指针走到链表的末尾时,走的慢的指针正好在链表的中间。

2.判断一个单向链表是否形成了环形结构。

和之前的题目一样,定义两个指针,同时从链表的头结点出发,一个指针一次走一步,另一个指针一次走两步。如果走得快的指针追上了走得慢的指针,那么链表就是环形链表;如果走得快的指针走到了链表的末尾都没有追上第一个指针,那么链表就不是环形链表。

 

碰到类似问题,当我们用一个指针遍历链表不能解决问题的时候,可以尝试用两个指针来遍历链表。可以让其中一个指针遍历的速度快一些(比如一次在链表上走两步),或者让那个它先在链表上走若干步。

 

img_e00999465d1c2c1b02df587a3ec9c13d.jpg
微信公众号: 猿人谷
如果您认为阅读这篇博客让您有些收获,不妨点击一下右下角的【推荐】
如果您希望与我交流互动,欢迎关注微信公众号
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。

目录
相关文章
|
8月前
19 删除链表的倒数第 N 个结点
19 删除链表的倒数第 N 个结点
LeetCode | 19. 删除链表的倒数第 N 个结点
LeetCode | 19. 删除链表的倒数第 N 个结点
|
3月前
【LeetCode 09】19 删除链表的倒数第 N 个结点
【LeetCode 09】19 删除链表的倒数第 N 个结点
21 0
|
5月前
|
算法
LeetCode第19题删除链表的倒数第 N 个结点
该文章介绍了 LeetCode 第 19 题删除链表的倒数第 N 个结点的解法,通过使用快慢双指针,先将快指针移动 n 步,然后快慢指针一起遍历,直到快指针到达链尾,从而找到倒数第 N 个结点的前一个结点进行删除,同时总结了快慢指针可减少链表遍历次数的特点。
LeetCode第19题删除链表的倒数第 N 个结点
|
7月前
|
算法
19.删除链表的倒数第N个结点
19.删除链表的倒数第N个结点
|
8月前
19. 删除链表的倒数第 N 个结点
19. 删除链表的倒数第 N 个结点
45 1
19.删除链表的倒数第N个结点(LeetCode)
19.删除链表的倒数第N个结点(LeetCode)
|
算法 安全 Swift
LeetCode - #19 删除链表的倒数第 N 个结点
不积跬步,无以至千里;不积小流,无以成江海,Swift社区 伴你前行。如果大家有建议和意见欢迎在文末留言,我们会尽力满足大家的需求。
LeetCode19删除链表中倒数第n个结点
推导公式:通过举例,我们可以发现 n 和 链表长度 size 的关系:

热门文章

最新文章