python 装饰器解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介:

一般来说,装饰器是一个函数,接受一个函数(或者类)作为参数,返回值也是也是一个函数(或者类)。首先来看一个简单的例子:

-- coding: utf-8 --

def log_cost_time(func):

def wrapped(*args, **kwargs):

    import time

    begin = time.time()

    try:

        return func(*args, **kwargs)

    finally:

        print 'func %s cost %s' % (func.__name__, time.time() - begin)

return wrapped

@log_cost_time

def complex_func(num):

ret = 0

for i in xrange(num):

    ret += i * i

return ret

complex_func = log_cost_time(complex_func)

if name == '__main__':

print complex_func(100000)

code snippet 0

代码中,函数log_cost_time就是一个装饰器,其作用也很简单,打印被装饰函数运行时间。

装饰器的语法如下:

@dec

def func():pass

本质上等同于: func = dec(func)。

在上面的代码(code snippet 0)中,把line12注释掉,然后把line18的注释去掉,是一样的效果。另外staticmethod和classmethod是两个我们经常在代码中用到的装饰器,如果对pyc反编译,得到的代码一般也都是 func = staticmthod(func)这种模式。当然,@符号的形式更受欢迎些,至少可以少拼写一次函数名。

装饰器是可以嵌套的,如

@dec0

@dec1

def func():pass

等将于 func = dec0(dec1(fun))。

装饰器也有“副作用“”,对于被log_cost_time装饰的complex_calc, 我们查看一下complex_func.__name__,输出是:”wrapped“”。额,这个是log_cost_time里面inner function(wrapped)的名字,调用者当然希望输出是”complex_func”,为了解决这个问题,python提供了两个函数。

functools.update_wrapper

原型: functools.update_wrapper(wrapper, wrapped, assigned)

第三个参数,将wrapped的值直接复制给wrapper,默认为(__doc__, __name__, __module__)

第四个参数,update,默认为(__dict__)

functools.wraps: update_wrapper的封装

This is a convenience function for invoking partial(update_wrapper,wrapped=wrapped,assigned=assigned,updated=updated) as a function decorator when defining a wrapper function.

简单改改代码:

import functools

def log_cost_time(func):

@functools.wraps(func)

def wrapped(*args, **kwargs):

    import time

    begin = time.time()

    try:

        return func(*args, **kwargs)

    finally:

        print 'func %s cost %s' % (func.__name__, time.time() - begin)

return wrapped

再查看complex_func.__name__ 输出就是 “complex_func”

装饰器也是可以带参数的。我们将上面的代码略微修改一下:

def log_cost_time(stream):

def inner_dec(func):

    def wrapped(*args, **kwargs):

        import time

        begin = time.time()

        try:

            return func(*args, **kwargs)

        finally:

            stream.write('func %s cost %s \n' % (func.__name__, time.time() - begin))

    return wrapped

return inner_dec

import sys

@log_cost_time(sys.stdout)

def complex_func(num):

ret = 0

for i in xrange(num):

    ret += i * i

return ret

if name == '__main__':

print complex_func(100000)

code snippet 1

log_cost_time函数也接受一个参数,该参数用来指定信息的输出流,对于带参数的decorator

@dec(dec_args)

def func(args, *kwargs):pass

等价于 func = dec(dec_args)(args, *kwargs)。

装饰器对类的修饰也是很简单的,只不过平时用得不是很多。举个例子,我们需要给修改类的__str__方法,代码很简单。

def Haha(clz):

clz.__str__ = lambda s: "Haha"

return clz

@Haha

class Widget(object):

''' class Widget '''

if name == '__main__':

w = Widget()

print w

那什么场景下有必要使用decorator呢,设计模式中有一个模式也叫装饰器。我们先简单回顾一下设计模式中的装饰器模式,简单的一句话概述

  动态地为某个对象增加额外的责任

  由于装饰器模式仅从外部改变组件,因此组件无需对它的装饰有任何了解;也就是说,这些装饰对该组件是透明的。

下图来自《设计模式Java手册》或者GOF的《设计模式》

回到Python中来,用decorator语法实现装饰器模式是很自然的,比如文中的示例代码,在不改变被装饰对象的同时增加了记录函数执行时间的额外功能。当然,由于Python语言的灵活性,decorator是可以修改被装饰的对象的(比如装饰类的例子)。decorator在python中用途非常广泛,下面列举几个方面:

(1)修改被装饰对象的属性或者行为

(2)处理被函数对象执行的上下文,比如设置环境变量,加log之类

(3)处理重复的逻辑,比如有N个函数都可能跑出异常,但是我们不关心这些异常,只要不向调用者传递异常就行了,这个时候可以写一个catchall的decorator,作用于所用可能跑出异常的函数

def catchall(func):

@functools.wraps(func)

def wrapped(*args, **kwargs):

    try:

        return func(*args, **kwargs)

    except:

        pass

return wrapped

(4)框架代码,如flask, bottle等等,让使用者很方便就能使用框架,本质上也避免了重复代码。

decorator的奇妙应用往往超出相应,经常在各种源码中看到各种神奇的用法,酷壳这篇文章举的例子也不错。

参考文献

[2]H. Berenson, P. Bernstein, J. Gray, J.Melton, E. O’Neil,and P. O’Neil. A critique of ANSI SQL isolation levels. InProceedings of the SIGMOD International Conference on Management of Data, pages1–10, May 1995.

[3]Michael J. Cahill, Uwe Röhm, and Alan D.Fekete. 2008. Serializable isolation for snapshot databases. In SIGMOD ’08:Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pages 729–738, New York, NY, USA. ACM.

[4]Michael James Cahill. 2009. Serializable Isolation for Snapshot Databases. Sydney Digital Theses. University of Sydney, School of Information Technologies

[5] A. Fekete, D. Liarokapis, E. O’Neil, P.O’Neil, andD. Shasha. Making snapshot isolation serializable. www.codexueyuan.com In ACM transactions on database systems, volume 39(2), pages 492–528, June 2005.

相关文章
|
1天前
|
缓存 开发者 Python
探索Python中的装饰器:简化和增强你的代码
【10月更文挑战第32天】 在编程的世界中,简洁和效率是永恒的追求。Python提供了一种强大工具——装饰器,它允许我们以声明式的方式修改函数的行为。本文将深入探讨装饰器的概念、用法及其在实际应用中的优势。通过实际代码示例,我们不仅理解装饰器的工作方式,还能学会如何自定义装饰器来满足特定需求。无论你是初学者还是有经验的开发者,这篇文章都将为你揭示装饰器的神秘面纱,并展示如何利用它们简化和增强你的代码库。
|
1天前
|
Python
探索Python装饰器:从入门到实践
【10月更文挑战第32天】在编程世界中,装饰器是一种特殊的函数,它允许我们在不改变原有函数代码的情况下,增加额外的功能。本文将通过简单易懂的语言和实际案例,带你了解Python中装饰器的基础知识、应用以及如何自定义装饰器,让你的代码更加灵活和强大。
8 2
|
3天前
|
设计模式 缓存 测试技术
Python中的装饰器:功能增强与代码复用的艺术####
本文将深入探讨Python中装饰器的概念、用途及实现方式,通过实例演示其如何为函数或方法添加新功能而不影响原有代码结构,从而提升代码的可读性和可维护性。我们将从基础定义出发,逐步深入到高级应用,揭示装饰器在提高代码复用性方面的强大能力。 ####
|
2天前
|
监控 Python
探索Python中的装饰器:从入门到实践
【10月更文挑战第31天】在Python的世界里,装饰器是那些隐藏在幕后的魔法师,它们拥有着改变函数行为的能力。本文将带你走进装饰器的世界,从基础概念到实际应用,一步步揭开它的神秘面纱。你将学会如何用几行代码增强你的函数功能,以及如何避免常见的陷阱。让我们一起来发现装饰器的魔力吧!
|
2天前
|
开发框架 开发者 Python
探索Python中的装饰器:技术感悟与实践
【10月更文挑战第31天】 在编程世界中,装饰器是Python中一种强大的工具,它允许我们在不修改函数代码的情况下增强函数的功能。本文将通过浅显易懂的方式,带你了解装饰器的概念、实现原理及其在实际开发中的应用。我们将一起探索如何利用装饰器简化代码、提高可读性和复用性,同时也会分享一些个人的技术感悟,帮助你更好地掌握这项技术。
10 2
|
3天前
|
测试技术 数据安全/隐私保护 Python
探索Python中的装饰器:从基础到进阶
【10月更文挑战第30天】装饰器在Python中扮演着魔法般的角色,它们允许我们在不修改原始函数代码的情况下增加额外的功能。本文将通过简明的语言和直观的比喻,带你从零开始理解装饰器的概念、应用及其背后的原理。你将学会如何一步步构建自己的装饰器,并在代码示例的辅助下,解锁装饰器的更多可能。
|
4天前
|
缓存 测试技术 数据安全/隐私保护
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第29天】本文通过深入浅出的方式,探讨了Python装饰器的概念、使用场景和实现方法。文章不仅介绍了装饰器的基本知识,还通过实例展示了如何利用装饰器优化代码结构,提高代码的可读性和重用性。适合初学者和有一定经验的开发者阅读,旨在帮助读者更好地理解和应用装饰器,提升编程效率。
|
5天前
|
测试技术 Python
深入浅出Python装饰器
【10月更文挑战第28天】本文将通过一个生动的比喻,带你走进Python装饰器的世界。就像给蛋糕加上精美的糖衣,让味道和外观更加诱人,Python装饰器同样为我们的代码增添魔力。我们将从基础概念出发,一步步深入到装饰器的实际应用,最后探讨如何避免常见的陷阱。准备好了吗?让我们一起揭开Python装饰器的神秘面纱!
10 3
|
9天前
|
测试技术 开发者 Python
深入浅出:Python中的装饰器解析与应用###
【10月更文挑战第22天】 本文将带你走进Python装饰器的世界,揭示其背后的魔法。我们将一起探索装饰器的定义、工作原理、常见用法以及如何自定义装饰器,让你的代码更加简洁高效。无论你是Python新手还是有一定经验的开发者,相信这篇文章都能为你带来新的启发和收获。 ###
9 1
|
9天前
|
设计模式 测试技术 开发者
Python中的装饰器深度解析
【10月更文挑战第24天】在Python的世界中,装饰器是那些能够为函数或类“添彩”的魔法工具。本文将带你深入理解装饰器的概念、工作原理以及如何自定义装饰器,让你的代码更加优雅和高效。