《图解Spark:核心技术与案例实战》介绍及书附资源

简介:

本书中所使用到的测试数据、代码和安装包放在百度盘提供 下载 ,链接: https://pan.baidu.com/s/1ht1Fipm 密码: wm35

 另外在百度盘提供本书附录  下载 ,链接: https://pan.baidu.com/s/1c4aZjpQ 密码: ibv4

 

为什么要写这本书

在过去的十几年里,由于计算机普遍应用和互联网的普及数据呈现了爆发式增长,在这个背景下Doug Cutting受到谷歌两篇论文(GFS和MapReduce)的启发下开发Nutch项目, 2006年Hadoop脱离了Nutch,成为Apache的顶级项目,带动了大数据发展新十年。在这段时间中,大数据开源产品如雨后春笋层出不穷,特别是2009年由加州大学伯克利分校AMP实验室开发的Spark,它以内存迭代计算的高效和各组件所形成一栈式解决平台成为这些产品的翘楚。

Spark在2013年6月成为Apache孵化项目,8个月后成为其顶级项目,在2014年5月份发布了1.0版本,在2016年7月份正式发布了2.0版本,在这个过程中Spark社区不断壮大,成为了最为活跃的大数据社区之一。作为大数据处理的“利器”,Spark在发展过程中不断地演进,在各个版本存在较大的差异,市面上关于介绍的Spark已经不少,但是这些书基于Spark版本稍显陈旧,另外在介绍Spark的时候未能把原理、代码和实例相结合,基于这个情况笔者便有了写一本在剖析Spark原理的同时结合实际实例,从而让读者能够更加深入理解和掌握Spark。

在本书中先对Spark的生态圈进行了介绍,讲述了Spark的发展历程,同时也介绍Spark实战环境的搭建,接下来从Spark的编程模型、作业执行、存储原理和运行架构等方面讲解了Spark内部核心原理,最后对Spark的各组件进行详细介绍,这些组件包括了Spark SQL的即席查询、Spark Streaming的实时流处理应用、MLbase/MLlib的机器学习、GraphX的图处理、SparkR的数学计算和Alluxio的分布式内存文件系统等。

读者对象

(1) 大数据爱好者

随着大数据时代的来临,无论传统行业、IT行业以及互联网等行业都将涉及到大数据技术,本书能够帮助这些行业的大数据爱好者了解Spark生态圈和发展演进趋势。通过本书可以了解到Spark特点和使用的场景,如果希望继续深入学习Spark知识,该书也是很好的入门选择。

(2) Spark开发人员

如果要进行Spark应用的开发,仅仅掌握Spark基本使用方法是不够的,还需深入了解Spark的设计原理、架构和运行机制。在本书中将深入浅出地讲解Spark的编程模型、作业运行机制、存储原理和运行架构等内容,通过这些内容的学习,可以编写出更加高效的应用程序。

(3) Spark运维人员

作为一名Spark运维人员,适当了解Spark的设计原理、架构和运行机制对于运维工作十分有帮助。通过该书的学习,不仅能够更快地定位并排除故障,而且还能够对Spark运行进行调优,让Spark运行更加稳定和快速。

(4) 数据科学家和算法研究

随着大数据技术的发展,实时流计算、机器学习、图计算等领域成为较热的研究方向,由于Spark有着较为成熟的生态圈,能够一栈式解决类似场景的问题。这些研究人员可以通过本书加深对Spark的原理和应用场景的理解,能够更好地利用Spark各个组件进行数据计算和算法实现。

内容速览

本书分为三个部分,共计12章。

第一部分为基础篇(第1~2章),介绍了Spark诞生的背景、演进历程,介绍了Spark生态圈的组成,并详细地介绍如何搭建Spark实战环境,通过该环境不仅可以阅读Spark源代码,而且可以开发Spark应用程序。

第二部分为核心篇(第3~6章),讲解了Spark的编程模型、核心原理、存储原理和运行架构,在核心原理中对Spark通信机制、作业执行原理、调度算法、容错和监控管理等进行了深入的分析,在分析原理和代码的同时结合实例进行演示。

第三部分为组件篇(第7~12章),介绍了Spark的各个组件,包括了Spark SQL的即席查询、Spark Streaming的实时流处理应用、MLbase/MLlib的机器学习、GraphX的图处理、SparkR的数学计算和Alluxio的分布式内存文件系统等。

另外本书后面还包括5个附录:附录A为编译安装Hadoop,附录B为安装MySql数据库,附录C为编译安装Hive,附录D为安装ZooKeeper,附录E为安装Kafka。由于该书篇幅的限制,这些内容在作者的博客可以下载。

勘误和支持

由于笔者的水平有限,加之编写时间跨度较长,同时Spark演进较快,在编写此书的过程中难免会出现错误或者不准确的地方,恳请读者批评指正。如果本书存有错误,或者您有Spark的内容需要探讨,可以发送邮件到jan98341@qq.com进行联系,期待能够得到大家的反馈。

致谢

感谢中油瑞飞公司,让我接触到大数据的世界,并工作的过程中深入了解Spark,感谢吴建平、于鹏、李新宅、祝军、张文逵、马君博士、卢文君等领导同事,在本书编写中提供无私的帮助和宝贵的建议。

感谢京东商城的付彩宝、沈晓凯对我工作和该书的支持,感谢付彩宝在繁忙的工作为本书写推荐,感谢京东数据挖掘架构师何云龙为我作序,感谢大数据平台部的周龙波对该书提出了宝贵意见。

感谢EMC常雷博士为本书审稿并写推荐。

感谢Alluxio CEO的李浩源博士对本书的支持,感谢范斌在非常忙的工作中,抽出时间给Alluxio章节进行了审稿并提供了很好的建议。

感谢电子出版社的安娜编辑,正式由于她耐心和支持才让本书的得以出版。

感谢我的家人对自己的支持和理解,特别是在写书过程中老婆又添猴宝宝,让自己拥有一对健康可爱的儿女,这些给自己莫大的动力,让自己的努力更加有意义。

谨以此书先给我亲爱的家人,你们是我努力的源泉。










本文转自shishanyuan博客园博客,原文链接:   http://www.cnblogs.com/shishanyuan/p/6195689.html ,如需转载请自行联系原作者


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
6月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
370 0
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
970 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
分布式计算 大数据 Java
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
208 5
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
161 3
|
9月前
|
人工智能 分布式计算 调度
打破资源边界、告别资源浪费:ACK One 多集群Spark和AI作业调度
ACK One多集群Spark作业调度,可以帮助您在不影响集群中正在运行的在线业务的前提下,打破资源边界,根据各集群实际剩余资源来进行调度,最大化您多集群中闲置资源的利用率。
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
265 0
|
分布式计算 Java 数据库连接
回答粉丝疑问:Spark为什么调优需要降低过多小任务,降低单条记录的资源开销?
回答粉丝疑问:Spark为什么调优需要降低过多小任务,降低单条记录的资源开销?
153 1
|
设计模式 数据采集 分布式计算
企业spark案例 —出租车轨迹分析
企业spark案例 —出租车轨迹分析
514 0
|
分布式计算 大数据 Spark
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(二)
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(二)
168 1
|
SQL 分布式计算 数据挖掘
Spark_Day07:Spark SQL(DataFrame是什么和数据分析(案例讲解))
Spark_Day07:Spark SQL(DataFrame是什么和数据分析(案例讲解))
332 0